
FOQUS Documentation
Release 3.22.dev0

CCSI team

Apr 10, 2024

CONTENTS

1 FOQUS Installation and Running 1

2 Introduction 9

3 Flowsheets and Settings 13

4 Optimization 37

5 Uncertainty Quantification (UQ) 51

6 Optimization Under Uncertainty (OUU) 117

7 Surrogate Modeling 125

8 Sequential Design of Experiments (SDOE) 151

9 Robust Optimality-Based Design of Experiments (ODoE) 251

10 Heat Integration 281

11 PYOMO-FOQUS 285

12 IDAES-FOQUS 287

13 FOQUS-MATLAB 293

14 Simulation Standard Interface (SimSinter) 307

15 Surrogate Model Based Optimizer 359

16 Debugging 375

17 Developer Documentation 377

18 Vector Variables Support Capability 381

19 References 401

20 Contact and Support 403

21 Copyright and License 405

22 FOQUS 407

i

ii

CHAPTER

ONE

FOQUS INSTALLATION AND RUNNING

This chapter covers how to install and run FOQUS as well as how to install other optional components for use within
FOQUS.

1.1 Quick Start

Note: If you are installing on Apple silicon please use the sub-sections as this quick start will not work.

For those familiar with the details, here is a summary of how to install and run FOQUS:

• Download and install Anaconda.

• In a terminal, to setup and install:

conda create --name ccsi-foqus -c conda-forge python=3.10 pywin32=306
conda activate ccsi-foqus
pip install ccsi-foqus
foqus --make-shortcut # Create Desktop shortcut (Windows only)

•

• In a terminal, to run:

conda activate ccsi-foqus
foqus

• On Windows, double-click the Desktop shortcut made above.

For a detailed explanations see the following sub-sections.

1.2 Contents

1.2.1 Install Python

Python version 3.8 up through 3.12 is required to run FOQUS.

We recommend using either the Miniconda or Anaconda Python distribution and package management system. The
choice of Miniconda or Anaconda is up to the user, with Miniconda being smaller and quicker to download while
Anaconda is larger but more self-contained. For Windows users, Anaconda is likely a better choice as it also comes
with the “Anaconda Prompt” which is a command terminal already set up for working with Anaconda. The primary

1

https://www.anaconda.com/distribution/
https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/download/

FOQUS Documentation, Release 3.22.dev0

advantage of using Miniconda or Anaconda is being able to isolate and customize a python environment specifically for
FOQUS without having to modify your existing system python environment. It does this by allowing the ordinary user
the ability to create self-contained python environments without any need for administrator privileges. These separate
environments can have different set of packages, isolating version dependencies when working with multiple python
projects.

If you have a working version of Python 3.8 through 3.12, which you prefer over Anaconda, you can skip these steps.

Anaconda or Miniconda Install and Setup

1. Download one of Miniconda or Anaconda.

2. Install the above package following the install instructions for your operating system.

3. Create a ccsi-foqus conda environment; this environment will be referred to as ccsi-foqus in the installation
documentation, but you can use any name you like. If you would like to install multiple version of FOQUS (for
example a stable version and the latest development version), this can be done by running the following command
multiple times with different environment names after the --name flag in the below command. In a terminal (or
on Windows in the Anaconda Prompt) type:

conda create --name ccsi-foqus -c conda-forge python=3.12 pywin32=306

Then follow the prompts. This will create a new conda environment with a minimal set of packages. To use a
different version of python, change the version specified after python= in the command.

Note: The command above installs the pywin32 Conda package immediately after creating the Conda envi-
ronment. The pywin32 package is strictly required to run FOQUS on Windows, and should be installed with
Conda from the conda-forge channel or errors might occur. For other platforms (Linux, macOS), the pywin32
package is not required. However, the pywin32 package itself is still available, and therefore the command above
is compatible with all platforms for which FOQUS is supported.

4. Activate the environment on Linux in a terminal type:

conda activate ccsi-foqus

If you create an environment in which to install FOQUS, you will need to ensure that environment is active before
installing FOQUS. On Windows, once FOQUS is installed a batch file is created that will activate the proper environ-
ment when running FOQUS. On Linux or Mac, you will need to activate the appropriate environment before running
FOQUS.

1.2.2 Install FOQUS

Note: In previous releases we instructed you to download the FOQUS code and install it in place. As of version
1.5.0, this is no longer required unless you are running on Apple silicon. The below pip install method is now the
preferred method to install FOQUS.

To install FOQUS, open the Anaconda prompt (or appropriate terminal or shell depending on operating system and
choice of Python), and run the following commands:

conda activate ccsi-foqus
pip install ccsi-foqus
foqus --make-shortcut # Windows only

2 Chapter 1. FOQUS Installation and Running

https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/download/
https://conda.io/projects/conda/en/latest/user-guide/install/index.html

FOQUS Documentation, Release 3.22.dev0

This will install FOQUS and all the required packages into the ccsi-foqus conda environment. The last command
there will create a Desktop shortcut for easier, non-terminal, startup of FOQUS (Windows only, for now).

1.2.3 For Apple silicon

Open the Anaconda prompt and run the following commands:

conda activate ccsi-foqus
conda install pyqt
git clone https://github.com/CCSI-Toolset/FOQUS
cd FOQUS
pip install -e .

1.2.4 Install FOQUS Examples

Note: In previous releases the examples were packaged inside the main ccsi-foqus package. Since version 3.5.0,
they are no longer part of the ccsi-foqus package, but instead distributed as a separate archive. The steps described
below are now the correct method to install the FOQUS examples.

To obtain the FOQUS examples, go to the “Releases” section of the FOQUS code repository on GitHub at https:
//github.com/CCSI-Toolset/FOQUS/releases, and locate the release of interest based on the version number.

Then, expand the “Assets” section. The examples are packaged in a ZIP archive named cssi-foqus-X.Y.
Z-examples.zip, where X.Y.Z is the FOQUS version number.

Finally, download the archive containing the example, and extract it to a directory of your choice on your system.
Throughout the rest of this documentation, we will refer to this directory as the Examples directory.

1.2.5 Run FOQUS

The specific command to launch FOQUS depends on the operating system.

To launch FOQUS, open the Anaconda prompt (or appropriate terminal or shell depending on operating system and
choice of Python), and run the following commands:

conda activate ccsi-foqus
foqus

Alternatively on Windows you can start FOQUS by double-clicking on the “ccsi-foqus” Desktop shortcut created when
FOQUS was first installed. That shortcut can be recreated at any time by opening a terminal, as described above, and
starting FOQUS with the “make shortcut” option:

foqus --make-shortcut

Note: The first time FOQUS is run, it will ask for a working directory location. This is the location FOQUS will put
any working files. This setting can be changed later.

1.2. Contents 3

https://github.com/CCSI-Toolset/FOQUS/releases
https://github.com/CCSI-Toolset/FOQUS/releases

FOQUS Documentation, Release 3.22.dev0

Note: Files passed as command line arguments to FOQUS will be relative to where FOQUS is run. Once FOQUS
starts, file paths will be relative to the FOQUS working directory.

Running FOQUS without a graphical interface (“batch” or “headless” mode)

The default usage mode for FOQUS is through its graphical interface, or GUI. However, it’s still still possible to use
FOQUS in situations where a graphical interface is not available and/or practical, such as batch computing (e.g. in an
HPC cluster) or automation (e.g. within a script).

To enable this mode, set the QT_QPA_PLATFORM environment variable to one of the supported values before starting
FOQUS, e.g., for the Bash shell:

export QT_QPA_PLATFORM=minimal

Note: If FOQUS is not configured to enable batch/headless mode as described above, the following error messages
might occur when starting FOQUS:

PyQt5 or Qt not available

or:

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was␣
→˓found.
This application failed to start because no Qt platform plugin could be initialized.␣
→˓Reinstalling the application may fix this problem.

Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen, vnc,␣
→˓wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl, xcb.

If, on the contrary, a graphical interface is desired but the errors above occur, it is possible that the system is
not yet configured to support graphical applications. In this case, try installing the libgl1-mesa-glx and/or
libxkbcommon-x11-0 packages using the package manager appropriate for your Linux distribution (i.e. apt-get
install on Ubuntu).

1.2.6 Install Optional Software

There are several optional pieces of software which are not written in Python and not easily installed automatically.
There are a couple packages which most users would want to install. The first is PSUADE, which provides FOQUS
UQ functionality. The second is TurbineLite which requires Windows and is used to interface with Excel, Aspen, and
gPROMS software.

Other software listed below will enable additional features of FOQUS if available.

4 Chapter 1. FOQUS Installation and Running

FOQUS Documentation, Release 3.22.dev0

Install PSUADE-Lite (current version: 1.9.0)

PSUADE (Problem Solving environment for Uncertainty Analysis and Design Exploration) is a software toolkit con-
taining a rich set of tools for performing uncertainty analysis, global sensitivity analysis, design optimization, model
calibration, and more.

PSUADE-Lite is now available as a Conda package. To install just follow the steps below:

conda activate ccsi-foqus
conda install --yes -c conda-forge -c CCSI-Toolset psuade-lite=1.9
psuade --help # quickly test that the psuade executable has been installed correctly

The psuade executable should now be available within the Conda environment’s folders, i.e. at the path
$CONDA_PREFIX/bin/psuade (Linux, macOS) or %CONDA_PREFIX%\bin\psuade.exe (Windows). Once you set
the full path in the corresponding field in the FOQUS GUI “Settings” tab, you should be able to use it normally within
FOQUS.

Install Turbine and SimSinter (Windows Only)

Note: You will need to install Turbine and SimSinter in order to run FOQUS locally with Aspen and Excel. The
Turbine installation will install the Turbine Web API Windows Service and applications that manage Aspen and Excel
processes. The SimSinter installation will install the SinterConfigGUI application and libraries for interacting with
Aspen and Excel through COM Server interfaces. The programs “SimSinter” and “TurbineLite” should appear on the
local installed programs list.

• Install Microsoft SQL Server Compact 4.0.

• Download and install the latest releases of SimSinter and TurbineLite.

• Install SimSinter first, then TurbineLite.

• After the install the Turbine Web API Service Will start automatically when Windows starts, but it will not start
directly after the install. Do one of these two things (only after install):

– Restart computer, or

– Start the “Turbine Web API service”:

1. open Task Manager

2. go to the “Services” tab

3. click the “Services” button (in the lower right corner)

4. right-click “Turbine Web API Service” from the list, and

5. click “Start”

• Configure the location of the executables in FOQUS

– SimSinter

1. In “Settings” (see Figure 1 below) go to the “FOQUS” tab

2. Modify the “SimSinter Home” field to point to the directory you installed SimSinter

– TurbineLite

1. In “Settings” (see Figure 1 below) go to the “Turbine” tab

1.2. Contents 5

https://github.com/LLNL/psuade-lite
https://www.microsoft.com/en-us/download/details.aspx?id=30709
https://github.com/CCSI-Toolset/SimSinter/releases/
https://github.com/CCSI-Toolset/turb_sci_gate/releases/

FOQUS Documentation, Release 3.22.dev0

2. In the “TurbineLite (local)” section modify the “TurbineLite Home” field to point to the directory you
installed TurbineLite

Install ALAMO

ALAMO (Automated Learning of Algebraic Models for Optimization) is a software toolkit that generates algebraic
models of simulations, experiments, or other black-box systems. For more information, go to the ALAMO Home Page.

Download ALAMO and request a license from the ALAMO download page.

Install NLopt

NLopt is an optional optimization library, which can be used by FOQUS. NLopt is not available to be installed with
pip, but can be installed with conda as follows:

conda activate ccsi-foqus
conda install -c conda-forge nlopt

For more information, see the NLopt Installation Instructions.

Install SnobFit

SnobFit is an optional optimization library, which can be used by FOQUS for unconstrained optimization. The python
package can be installed with pip with:

conda activate ccsi-foqus
pip install SQSnobFit

The plugin has been developed for FOQUS versions 2.1 and greater. For further details on the available versions and
installation, see the SQSnobFit PyPI package page.

Once the python package is downloaded, navigate the path to “SQSnobFit” folder (likely $CONDA_PREFIX/lib/
python3.7/site-packages/SQSnobFit/) and modify the _snobfit.py file making the following changes:

Comment out or remove the following code lines just below def minimize(...) function definition:

if budget <= 0:
budget = 100000

Then replace:

return Result(fbest, xbest), objfunc.get_history()

with:

return (request,xbest,fbest)

in the def minimize() function.

6 Chapter 1. FOQUS Installation and Running

https://sahinidis.coe.gatech.edu/alamo
https://minlp.com/alamo-downloads
https://nlopt.readthedocs.io/en/latest/
https://pypi.org/project/SQSnobFit/

FOQUS Documentation, Release 3.22.dev0

Install R

R is a software toolbox for statistical computing and graphics. R version 3.1+ is required for the ACOSSO and BSS-
ANOVA surrogate models and the Basic Data’s SolventFit model.

• Follow instructions from the R website to download and install R.

• Open R and type the following to install and load the prerequisite packages:

install.packages('quadprog')
library(quadprog)
install.packages('abind')
library(abind)
install.packages('MCMCpack')
library(MCMCpack)
install.packages('MASS')
library(MASS)
q()

• The last command exits R. When asked to save workspace image, type “y”.

• Open FOQUS, go to the “Settings” tab, and set the “RScript Path” to the proper location of the R executable.

1.2.7 The FOQUS “Settings” Tab

Use the FOQUS “Settings” tab to set the optional software configuration described in this section:

1.2. Contents 7

http://cran.r-project.org/

FOQUS Documentation, Release 3.22.dev0

Fig. 1: Figure 1: The FOQUS “Settings” tab

8 Chapter 1. FOQUS Installation and Running

CHAPTER

TWO

INTRODUCTION

The Framework for Optimization, Quantification of Uncertainty, and Surrogates (FOQUS) software provides a graphi-
cal interface and standard platform for several Carbon Capture Simulation Initiative (CCSI) tools. The primary feature
of FOQUS is its ability to interact with commonly-used chemical engineering process modeling software. Models
constructed using a variety of software can be combined into a larger composite model. The CCSI tool SimSinter
provides connectivity to external process simulation software. SimSinter also provides a standard library to enable in-
terfacing with other software. The CCSI FOQUS Cloud on Amazon Web Services (AWS) is fully compatible with the
FOQUS UI, and can be used to submit flowsheets with Aspen ACM/AspenPlus simulations to be run remotely and in
large batch submissions to take advantage of high parallelism enabled through cloud architecture including on-demand
Cloud resource scaling.

In FOQUS, simulations can be connected in a meta-flowsheet, which enables parts of a process to be modeled using
the most appropriate software and combines them into a single large model, possibly including recycle streams. For
example, in studying a carbon capture system for a coal-fired power plant: a power plant may be modeled in Thermoflex;
a solvent-based carbon capture system may be modeled in Aspen Plus; and a compression system may be modeled in
gPROMS. To optimize the entire system, these models can be combined into a single large model. The resulting meta-
flowsheet can be used for simulation-based optimization, uncertainty quantification (UQ), or generation of surrogate
models.

This section provides brief overview and motivating examples, for different uses of FOQUS.

2.1 Simulation Based Optimization

Simulation-based optimization considers a process simulation to be a black box model, which is a model where the
mathematical details are not known. In this case, models are evaluated using process simulation software; multiple
models can be combined to form larger models. Due to the long run times and the limitations of the methods used, a
limited set of optimization variables (usually less than 30) is considered. Simulation-based optimization has some ad-
vantages and disadvantages, compared to equation-based optimization methods. With simulation-based optimization,
there is no need to provide simplified algebraic models, problem formulation is relatively simple, and a good solution
can usually be obtained; however, a provably-global optimum cannot be found and it is impractical to deal with very
large numbers of variables. Large numbers of variables may be found in superstructure and heat integration problems
where the structure of a process is being optimized. Both simulation and equation-based optimization methods are
used in CCSI.

Capture of CO2 from a pulverized coal-fired power plant involves several very different systems including: a boiler,
steam cycle, flue gas desulfurization, carbon capture, and CO2 compression. It is convenient to separate many of these
processes into smaller, more reliable simulations. The different processes may also be better simulated in different
software packages. Although some process simulation software contains optimization features, there are several reasons
these may not be practical for a large composite system. It may be hard to develop a large model of the entire system
that reliably converges. Many optimization methods have a difficult time dealing with simulation errors, and many
black box derivative free optimization solvers are better able to handle occasional simulation failures. It may not be

9

FOQUS Documentation, Release 3.22.dev0

practical to simulate the entire process accurately using a single tool. Derivatives are also difficult to estimate for many
systems when models do not provide exact derivatives, making derivative-free methods a good option.

The motivating example used to demonstrate the optimization framework is fairly simple. The system consists of a
series of bubbling fluidized bed (BFB) CO2 adsorbers and regenerators modeled in Aspen Custom Modeler (ACM).
The details of the BFB system are described in the CCSI BFB model documentation. A cost analysis for a 650 MW
power plant and capture system is presented in an Excel spreadsheet. The simulation and spreadsheet files are provided
in the examples directory in the FOQUS installation directory (see the tutorial in Section ref{tutorial.sim.flowsheet} for
more information). The spreadsheet contains capital cost as well as operating and maintenance cost estimates, which
are used to estimate the cost of electricity.

In this example, the objective function is the cost of electricity; the decision variables are design and operating variables
in the ACM model. The cost of electricity is minimized while maintaining a 90 CO2 percent capture rate. The BFB
system model and the cost of electricity are contained in separate models connected in a FOQUS flowsheet, which
enables the cost of electricity to be calculated in Excel, using data acquired from the ACM model. See Sections
ref{tutorial.sim.flowsheet} and ref{sec.opt.tutorial} for more information about the optimization problem.

2.2 Uncertainty Quantification

The Uncertainty Quantification (UQ) module of FOQUS encompasses a rich selection of mathematical, statistical, and
diagnostic tools for application users to perform UQ studies on their simulation models. The PSUADE tool provides
most of the UQ functionality available in FOQUS (Tong 2011). The recommended systematic multi-step approach
consists of the following steps:

1. Define the objectives of the analysis (e.g., identify the most important sources of uncertainties).

2. Specify a simulation model to be studied. Acquire the model input files and the executable that runs the simulation
(i.e., an executable that uses the specified inputs and generates model outputs). Identify the outputs of interest,
identify all relevant sources of uncertainties, and ensure that they can be used as input variables to the simulation
model.

3. Select some or all input parameters that have uncertainty attributed. Characterize the prior probability distri-
bution of these selected parameters by specifying the upper/lower bounds. For non-uniform prior distributions
(e.g., Gaussian), additional information (e.g., mean and standard deviation) is required to define the shape of the
prior distribution. This prior distribution represents the user’s best initial guess about the selected parameters’
uncertainties.

4. Identify, if available, relevant data from physical experiments that can be used for model parameter calibration.
Model calibration is a process that applies the observational data to update the prior distribution. The model
calibration correlates the observational data to predict a distribution as a result.

5. Select a sample scheme and sample size. From this information, a set of input values are sampled from the prior
distribution. The choice of sampling scheme (which affects how the samples populate the input space) depends
on the UQ objective(s) specified in the first step.

6. “Run” the input samples. Running the input samples is the process where each sampled input value is fed to the
simulation executable (specified in Step 2) and the corresponding output value is returned.

7. Analyze the results and make decisions on how to proceed.

Steps 1-4 are often done through expert knowledge elicitation and/or literature search. Steps 5-7 can be achieved
through software provided in the FOQUS UQ module.

The FOQUS UQ module provides a number of sampling and analysis methods, including:

• Parameter screening methods: computes the importance of input parameters to identify which are important (to
be kept in subsequent analyses) and which to ignore (to be weeded out).

10 Chapter 2. Introduction

FOQUS Documentation, Release 3.22.dev0

• Response surface (used interchangeably with ‘surrogate’) construction: approximates the relationship between
the input samples and their outputs via a smooth mathematical function. This response surface or surrogate can
then be used in place of the actual simulation model to speed up lengthy simulations.

• Response surface validation methods: evaluates how well a given response surface fits the data. This is important
for choosing different response surfaces.

• Basic uncertainty analysis: propagates input uncertainty to output uncertainty.

• Sensitivity analysis methods: quantifies how much varying an input value can impact the resulting output value.

• Bayesian calibration: applies observational data to refine the estimate of input uncertainties.

• Visualization tools: views computed distributions and response surfaces.

• Diagnostics tools (mainly in the form of scatter plots): checks samples and model behaviors (e.g., outliers).

The adsorber 650.1 subsystem process model is used to demonstrate the UQ framework. The A650.1 process model was
developed and is continuously refined by our Process Synthesis and Design Team. The model is based on their design
and optimization of an initial full-scale design of a solid sorbent capture system for a net 650 MW (before capture)
supercritical pulverized coal power plant. The A650.1 model describes a solid sorbent-based carbon capture system
that uses the NETL-32D sorbent. NETL-32D is a mixture of polyethyleneamine (PEI) and aminosilanes impregnated
into the mesoporous structure of a silica substrate. CO2 removal is achieved through chemical reactions between the
amine sites within the sorbent. The A650.1 model is implemented in Aspen Custom Modeler (ACM) and contains
many components (e.g., adsorbers, regenerators, compressors, heat exchangers). For the UQ analyses, this manual
focuses on the adsorber units, which are responsible for the adsorption of CO2 from the input flue gas.

In its original form, the A650.1 model consists of a deterministic simulation model, which means to consider all the
parameters (e.g. chemical reaction parameters, heat and mass transfer coefficients) to have a fixed value (most likely
fixed to a mean value, lower or upper bound for robustness). With the FOQUS UQ module, the model uncertainties
can be addressed. Thus, UQ analysis of the A650.1 model would help to develop a robust design by addressing the
following questions: * How accurately does each subsystem model predict actual system performance (under uncertain
operating conditions)? * Which input parameters should be examined to improve prediction accuracy? * What is each
input parameters’ contribution to prediction uncertainty?

2.3 Optimization Under Uncertainty

The Optimization Under Uncertainty (OUU) module in FOQUS is an extension of simulation-based optimization by
including the contribution of model parameter uncertainties in the objective function. OUU is useful when inclusion of
uncertainties may significantly alter the optimal design configurations. A straightforward approach to include the effect
of uncertainty is to replace the objective function with its statistical mean on an ensemble drawn from the probability
distributions of the continuous uncertain parameters (other options are available in FOQUS). Alternatively, users can
provide a set of ‘scenarios’, where each scenario is associated with a probability. The latter case is often called ‘scenario
optimization.’ The FOQUS OUU accommodates both continuous and scenario-based uncertain parameters. OUU
makes use of the flowsheet for evaluations of the objective function. Naturally, OUU requires more computational
resources than deterministic optimization. However, the ensemble runs can be launched in parallel so ideally, the
turnaround time remains about the same as that of deterministic optimization if high performance computing capability
(such as the CCSI FOQUS Cloud) is used in conjunction with FOQUS.

2.3. Optimization Under Uncertainty 11

FOQUS Documentation, Release 3.22.dev0

2.4 Surrogate Models

Process simulations are often time consuming and occasionally fail to converge. For mathematical optimization, it is
sometimes necessary to replace a simulation with a surrogate model, which is a simplified model that executes much
faster. FOQUS contains tools for creating and quantifying the uncertainty associated with surrogate models.

2.4.1 ALAMO

While simulation based optimization can often do a good job of providing optimal design and operating conditions
for a predetermined flowsheet, it cannot provide an optimal flowsheet. To obtain a more optimal flowsheet, a mixed
integer nonlinear program must be solved. These types of problems cannot generally be solved using simulation based
optimization. A solution is to generate relatively simple algebraic models that accurately represent the high fidelity
models. FOQUS currently provides an interface for ALAMO (Cozad et al. 2014), which builds surrogate model that
are well suited for superstructure optimization.

2.4.2 ACOSSO

The Adaptive Component Selection and Shrinkage Operator (ACOSSO) surface approximation was developed under
the Smoothing Spline Analysis of Variance (SS-ANOVA) modeling framework (Storlie et al. 2011). As it is a smooth-
ing type method, ACOSSO works best when the underlying function is somewhat smooth. For functions which are
known to have sharp changes or peaks, etc., other methods may be more appropriate. Since it implicitly performs
variable selection, ACOSSO can also work well when there are a large number of input variables. To facilitate the
description of ACOSSO, the univariate smoothing spline is reviewed first. The ACOSSO procedure also allows for
categorical inputs (Storlie et al. 2013).

2.4.3 BSS-ANOVA

The Bayesian Smoothing Spline ANOVA (BSS-ANOVA) is essentially a Bayesian version of ACOSSO (Reich 2009).
It is Gaussian Process (GP) model with a non-conventional covariance function that borrows its form from SS-ANOVA.
It tackles the high dimensionality (of inputs) on two fronts: (1) variable selection to eliminate uninformative variables
from the model and (2) restricting the level of interactions involved among the variables in the model. This is done
through a fully Bayesian approach which can also allow for categorical input variables with relative ease. Since it is
closely related to ACOSSO, it generally works well in similar settings as ACOSSO. The BSS-ANOVA procedure also
allows for categorical inputs (Storlie et al. 2013).

12 Chapter 2. Introduction

CHAPTER

THREE

FLOWSHEETS AND SETTINGS

This chapter provides general information about using FOQUS and constructing flowsheets. The FOQUS flowsheet
provides the basis for other analysis tools.

3.1 Contents

3.1.1 Reference

Getting Started

Follow the installation instructions provided in the FOQUS Installation and Running chapter.

The first time FOQUS is started, the user is prompted to specify a working directory. The working directory preference
is stored in %APPDATA%\.foqus.cfg on Windows (APPDATA is an environment variable). On Linux or OSX, the
working directory is specified in $HOME/.foqus.cfg. Additionally the user can override the working directory when
starting FOQUS by using the --working_dir <working dir> or -w <working dir> command line option. Log
files, user plugins, and files related to other FOQUS tools are stored in the working directory. The working directory
can be changed at a later time from within FOQUS. A full list of FOQUS command line arguments is available using
the -h or --help arguments.

Home Menu

Session Information Display

FOQUS flowsheet information and settings are stored in a session. The session screen displays information about the
current session. A menu is available by clicking the Session drop-down menu. The figure below shows the Home
window.

Fig. 1: Home Screen

1. The buttons displayed at the top of the Home window, excluding Help, are tab-like buttons that change the
window when selected. The depressed button indicates the currently displayed window.

A. Session displays the Session window, which contains a description of the session that is currently open. Session
has a drop-down menu that displays the Session menu.

B. Flowsheet displays the meta-flowsheet editing window.

C. Uncertainty displays the interface for PSUADE and UQ visualization.

13

FOQUS Documentation, Release 3.22.dev0

D. Optimization displays the simulation-based optimization interface.

E. OUU displays the optimization under uncertainty interface.

F. Surrogates displays the surrogate model generation window.

G. DRM-Builder displays the dynamic reduced model builder, which can be used to develop reduced models for
dynamic simulations.

H. Settings displays the main FOQUS settings window.

2. Help toggles the Help browser. The Help browser contains HTML help, licensing and copyright information,
log messages, and debugging console.

3. The main Session window displays information about the current session and is divided into three tabs:

• Metadata displays information about the current FOQUS session. The Session Name provides a descriptive
name for the session. This name is used by the data management framework and when running flowsheets
remotely, so a name is required. Entering a name should be the first step in creating a FOQUS flowsheet. Version
number can be used to keep track of changes to a FOQUS session. Confidence describes whether the FOQUS
session is expected to produce reliable results or not. ID is a unique identifier to identify a particular saved
version of the session. Creation Time is the date and time that the flowsheet was first saved. Modification
Time is the time and date that the flowsheet was last saved.

• Description displays a detailed explanation of the purpose of the current session file, the problem being solved,
and other useful information provided by the creator of the session file.

• Change Log displays a record of changes made to the file. If the Automatically create backup session file,
when saving changes checkbox is selected in FOQUS Settings, a backup file should exist for entries in the
Change Log. The backup can be matched to the Change Log by the unique identifier appended to the file name.

Session Menu

The figure below illustrates the Session menu.

Fig. 2: Home Window, Session Drop-Down Menu

1. Add Current FOQUS Session to Turbine. . . * upload the current FOQUS session to Turbine. This can be used
run a flowsheet in parallel with turbine.

2. Add\Update Model to Turbine enables additional models to be uploaded to Turbine. Turbine provides simu-
lation job queuing functionality so models cannot be run in FOQUS until they have been added to the Turbine
server.

3. New Session clears all session information so that a new session can be started.

4. Open Recent shows a list of recently open FOQUS sessions that can be quickly reloaded for convenience.

5. Open Session opens a session that was previously saved to a file.

6. Save Session saves the current session with the current session file name. If the session has not been previously
saved, the user will be prompted to enter a file name. Save Session commands the user to save two session files:
(1) a file with the selected name and (2) if backup option is enabled, a backup file with a name constructed from
the Session Name and ID. The Session ID is shown on the Session, Metadata tab. The backup file is saved to
the working directory. This system prevents accidental saving over an important file. It also enables the user to
open any previously saved session.

7. Save Session As is similar to Save Session; however, the user is prompted for a new file name.

8. Exit FOQUS exits FOQUS. The user is asked whether to save the current session before exiting.

14 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

Adding or Changing Turbine Simulations

Before running any flowsheet where a node is linked to a simulation, the simulation must be uploaded to Turbine. To
use a simulation at least two things are required: (1) the simulation file (e.g., Aspen Plus file, Excel file) and (2) the
SimSinter configuration. The SimSinter configuration file is a JavaScript Object Notation (JSON) formatted file that
specifies the simulation, input, and output. Any additional files required to run the simulation must also be uploaded.

Fig. 3: Turbine Upload Dialog Box

1. Create/Edit enables use of the SimSinter configuration Graphical User Interface (GUI) to create a SimSinter
configuration file. See the SimSinter documentation for more information.

2. Browse displays a file browser, which can be used to select an existing SimSinter configuration file. Once a
SimSinter configuration file is selected, the Application type is filled in. The SimSinter Configuration File and
simulation file are automatically added to the file upload table.

3. Simulation Name enables entry of a new name if uploading a new simulation. An existing simulation can
be selected from the drop-down list if an existing simulation is being modified. After selecting a SimSinter
configuration file, the simulation name is guessed from the SimSinter configuration file name, but it can be
edited.

4. Application displays the application that will be used to run the simulation. This is filled in automatically based
on information in the SimSinter configuration file, and cannot be edited.

5. Add Files enables uploading of any auxiliary files that may be required by the simulation. Multiple files may be
selected at once.

6. Remove Files enables added files to be removed from the list of files to upload.

7. File Table displays a list of files to be uploaded to Turbine.

8. Delete allows the simulation with the name currently displayed in the Simulation Name drop-down list to be
deleted from Turbine. Only simulations that have not been run can be deleted.

9. Resource Relative Path enables the user to set the path of resource files relative to the simulation working
directory. To set the directory, select files in the File Table. Multiple files can be selected. Click Resource
Relative Path, and type the relative path to assign to the selected resource files.

10. Turbine Gateway Selection enables the user to select where to upload the simulation (local TurbineLite or AWS
FOQUS Cloud). Current is the select configuration to run simulations. Remote is configured AWS FOQUS
Cloud. Local is the TurbineLite instance installed on the local computer. Remote + Local allows simulations to
be uploaded to both the local (TurbineLite) and the AWS FOQUS Cloud. Multiple/Custom allows simulations
to be uploaded to other Turbine instances by selecting Turbine configuration files.

Settings

The settings screen shows FOQUS settings that are related to the general FOQUS setup, and are unlikely to change
between sessions. The settings screen is accessible by clicking the Settings button at the top of the Home window. The
FOQUS settings can be stored in two locations: (1) “%APPDATA%.foqus.cfg” on Windows or “$HOME/.foqus.cfg”
on Linux or OSX, (2) “foqus.cfg” in the working directory.

The Settings screen displays settings grouped into tabs. Figure Settings, FOQUS Tab shows Settings, FOQUS tab.

Fig. 4: Settings, FOQUS Tab

Options in the Settings, FOQUS tab are described below.

3.1. Contents 15

FOQUS Documentation, Release 3.22.dev0

1. Save settings to working directory, when checkbox is selected the settings file will be read from the specified
working directory. This setting is useful for running multiple copies of FOQUS to ensure the settings do not
conflict. When starting additional copies of FOQUS, it is best to start them from the Working Directory command
line giving each copy of FOQUS its own independent working directory. If FOQUS is started more than once
from the Windows start menu, each copy will use the same working directory. Starting FOQUS multiple times
with the same working directory may cause unusual behavior in FOQUS.

2. Use DMF if available, when checkbox is selected the Data Management Framework (DMF) module will be
loaded and the DMF options will be shown in the Session menu.

3. Automatically create backup session file, when checkbox is selected each time a FOQUS session is saved it
will be saved twice. A backup copy with a universally unique identifier appended to the file name will be saved.
This will allow the user to load any previous save point of the session.

4. Smaller session files, when checkbox is selected significant storage space is saved by excluding formatting from
the session file; this makes the session files less human readable. A more readable session file can be useful for
debugging.

5. FOQUS Flowsheet Run Method enables the user to select between running simulations on the same computer
as FOQUS, or on the AWS FOQUS Cloud. Running simulations remotely on the cloud allows parallel execution.
The default setting is “Local”. If the user switches from “Local” to “Remote”, a warning message will appear.
The user will be informed that the models that have been uploaded to the Local Turbine may not be available in
the AWS FOQUS Cloud. Therefore, the user may need to upload these models into the Cloud in order to run the
models remotely.

6. Working Directory is the path to the FOQUS working directory. The Working Directory is where FOQUS
reads and writes files needed to function. When running multiple copies of FOQUS, the Working Directory can
also be specified from the command line using the “-w” or “-workingDir” options. After changing the Working
Directory, FOQUS should be restarted.

7. PSUADE EXE is the path to the PSUADE executable. PSUADE provides FOQUS’s UQ features.

8. SimSinter Home is the path to the SimSinter interface for creating Sinter configuration files for simulations to
be run with FOQUS. This setting is not required but it allows easy access to the SimSinter configuration GUI
when uploading simulation to Turbine.

9. iREVEAL Home is the path the iREVEAL installation. This is required to use the iREVEAL surrogate model
module.

10. ALAMO EXE is the path to the ALAMO executable. This is required to use the ALAMO surrogate model
module.

11. RScript Path is the path to the RScript executable. This is required for surrogate model modules that use R as
a platform.

12. Java Home is the path to the Java installation. The DMF and the iREVEAL surrogate modules require Java.

13. Revert Changes The settings changes are applied when the user navigates away from the settings screen. To
undo changes made to settings the revert button can be clicked before changing to another screen.

The Turbine tab contains settings for configuring the local and remote instance of Turbine. Figure Settings, Turbine
Tab shows the FOQUS Turbine settings.

Fig. 5: Settings, Turbine Tab

The first section in the Turbine tab is TurbineLite (Local). This section contains settings related to the local installation
of Turbine, and is only applicable when running FOQUS on the windows platform.

1. Test tests the connection to the local Turbine server to make sure it is configured and running properly.

16 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

2. Start Service starts the Turbine server service on Windows. The user must have permission to start services to
use this button.

3. Stop Service stops the Turbine server service on Windows. The user must have permission to stop services to
use this button.

4. Change Port can reconfigure the local Turbine server service on Windows to use a different port. This may be
necessary if Turbine conflicts with another service.

5. Aspen Version, Aspen 7.3 is still in common use but the API differs slightly form newer versions. This option
allows FOQUS to be used with Aspen 7.3.

6. TurbineLite Home is the location of the TurbineLite installation. For local simulation runs FOQUS needs to
know where TurbineLite is installed so it can launch Turbine consumers to run simulations. This setting is not
needed if simulations are only run remotely.

7. Turbine Configuration (local) is the path to the TurbineLite gateway configuration file for running simulations
locally. If simulations are only run remotely, this setting is not needed. New/Edit displays a form to create or edit
a Turbine configuration file. Having a setting for both local and remote Turbine allows easy switching between
run methods.

The second section in the Turbine tab is Turbine Gateway (Remote). This section contains settings related to a remote
instance of Turbine.

1. Test tests the connection to the remote Turbine server to make sure it is configured and running properly.

2. Turbine Configuration (remote), is the path to the Turbine gateway configuration file for running simulations
remotely. If simulations are only run locally, this setting is not needed. New/Edit displays a form to create or edit
a Turbine configuration file. Having a setting for both local and remote Turbine allows easy switching between
run methods.

3. Check Interval (sec) is the number of seconds between checking the remote Turbine server for job results. This
number should not be set too low to avoid overwhelming the Turbine server with requests.

4. Number of Times to Resubmit Failed Jobs is the number of times to resubmit jobs that fail. Jobs occasionally
fail due to software bugs. This allows a job to be retried.

The Logging tab contains settings related to the FOQUS log files, which provide debugging information. The FOQUS
log files are stored in the logs directory in the working directory. Figure Settings, Logging Tab show the FOQUS log
settings. There are two log files (1) FOQUS and (2) Turbine Client.

Fig. 6: Settings, Logging Tab

1. The level sliders indicate how much information to send to the logs.

2. The Log Files section enables the user to specify where the log information is sent. The File Out checkboxes
turn on or off the file output of logs. The Std. Out checkboxes enable or disable the output to the screen.

3. Format allows the format of the log messages to be changed. See the documentation for the Python 2.7 logging
module for more information.

4. Rotate Log Files turns on or off log file rotation. When a log file reaches a certain size, a new log file is started and
the contents of the old log are moved to a new file. There currently seems to be a bug in the log file rotation which
occasionally makes the log file output stop; therefore, the Rotate Log Files option is labeled as an experimental
feature.

3.1. Contents 17

FOQUS Documentation, Release 3.22.dev0

Flowsheet

The meta-flowsheet defines connections between simulations. The flowsheet defines the order that simulations are
performed and what data is transferred between them. Simulations are represented as nodes in the flowsheet. These
simulations may be links to external simulation software through the SimSinter/Turbine, or custom simulations or
simulation wrappers written in Python. Directed edges in the flowsheet connect nodes. The edges also specify which
variables in the simulations are equivalent.

If the flowsheet contains cycles, they are solved iteratively. Tear streams are selected by FOQUS based on two criteria:
(1) minimize the maximum number of times any cycle is torn and (2) minimize the total number of tear edges (which
only is considered when two tear sets have the same value for the first criteria).

FOQUS currently has two methods available for solving flowsheets with recycle: (1) direct substitution and (2) Wegstien
Wegstein 1958. FOQUS will solve strongly connected components in the order they are encountered in the flowsheet.
FOQUS flowsheets are generally not very complicated, so if a strongly connected component contains more than one
tear stream, they are solved simultaneously. More advanced solution options will be added if a need arises. Figure
Flowsheet Recycle shows how a simple flowsheet with recycle would be solved.

Fig. 7: Flowsheet Recycle

Flowsheet Editor

Figure Flowsheet Editor illustrates the main Flowsheet Editor screen and a description of the pieces. The toolbar on
the left contains various flowsheet tools.

Fig. 8: Flowsheet Editor

The first three buttons are mouse mode buttons. The current mouse mode is shown by the depressed button. The
remaining buttons on the toolbar perform an action. The flowsheet editing toolbar and flowsheet are described in detail
below.

1. Selection mode enables the user to select nodes and edges. Multiple items may be selected by holding down the
Shift key. To deselect everything, click an empty area of the flowsheet while not holding the Shift key. Selected
items can be moved by dragging them. To move multiple items, hold down the Shift key while dragging. The
last item selected becomes the current object to be edited in the Node or Edge Editor.

2. Add node mode enables the user to add a node by clicking anywhere on the flowsheet. Once a location is clicked,
a dialog box opens where the new node name can be entered. If Cancel is selected, no node is added. The new
node name cannot be “graph” and cannot match any existing node name.

3. Add edge mode enables edges to be added by selecting the node that the edge originates from, followed by the
node the edge terminates at.

4. Center flowsheet in display centers the display on the flowsheet.

5. Delete selected deletes all selected nodes and edges. If a node is deleted, all edges connecting to that node are
also deleted.

6. Run a simulation starts a single simulation run. This is primarily used to test a simulation before running
optimization or UQ.

7. Stop a simulation is enabled when a simulation is running and stops any running simulation. The simulation
may take several seconds to stop.

8. Set inputs to defaults returns all of the inputs to their default values.

18 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

9. Determine tear edges makes it easier to see where initial guesses are needed and makes it possible to edit the
tear set before running the flowsheet. If tear streams are needed but not specified before running a flowsheet, they
will be automatically specified, however inputs that will be used for the initial guess will not be known before
running.

10. Flowsheet solver settings contains options related to tear solvers.

11. Toggle node editor display displays or hides the Node Editor. The user can change the node being edited by
selecting from Name in the Node Editor or selecting it on the flowsheet in selection mode.

12. Toggle edge editor display displays or hides the edge editor. The user can change the edge being edited in the
Edge Editor, or by selecting it in selection mode.

13. Show results from all flowsheet runs displays the results of all flowsheet runs in a table view. This can be
exported to a spreadsheet.

14. Node represents a simulation or calculations.

15. Edge connects simulation data, represents data transfer between two nodes.

Node Editor

The Node Editor enables the assignment of simulations to a node, and editing variables. Figure Node Editor Window
shows the Node Editor window with the input variables section of the toolbox displayed.

Fig. 9: Node Editor Window

1. Apply immediately applies any changes made in the Node Editor. This is not usually needed. Changes are
applied when the current node is changed, the Node Editor is closed, or some other action is taken that requires
the flowsheet, such as running the flowsheet.

2. Revert sets the node back to the version where the changes were last applied. This is usually the original state
of the node when the editor was opened.

3. Run can be used to run the simulation represented by this node only. This can be used for testing to make sure
the node is properly configured without running the whole flowsheet.

4. Stop Run is active when a simulation is currently running. It stops a single node run or a flowsheet run.

5. There are three tabs in the Node Editor: (1) Variables tab, shown in Figure Node Editor Window, (2) Position
tab displays the coordinates of the node, and (3) Node Script tab enabling the entry of Python code to be executed
after the simulation is run.

6. Name displays the name of the node currently being edited. The current node can be changed by selecting from
existing nodes in the drop-down menu.

7. Code displays the error status code for the node.

8. Message displays a more detailed description of the error status of the node.

9. Type enables the user to select the type of model to run. The model types are none, Turbine, DMF Lite, DMF
Server, or Python Plugin. None allows no model to be assigned to the node; this is useful when the node only
executes a script entered directly into FOQUS. Turbine is used to execute Aspen, gPROMS, or Excel simulations.
Python plugins are custom simulations or wrappers written by the user. Surrogate model methods may also
produce Python plugin models.

10. Model enables selection of the models available on Turbine or loaded Python plugins.

11. Input Variables enables viewing and editing the node’s input variables. Most of these variables are added
automatically when a simulation is selected.

3.1. Contents 19

FOQUS Documentation, Release 3.22.dev0

a. Add variable enables the addition of an input variable. There are two reasons to add an input: (1) to use a
variable to pass information to another simulation (even if the variable is not used in any node calculation,
it can receive data from the previous simulation and be passed on to the next simulation) and (2) to use in
a node script. For example, a variable could be added that provides output in different units of measure.

b. Remove variable removes variables. If an input variable is removed that originally came from a Turbine
simulation, the simulation will run with the default value.

c. Tags displays a tag browser that lists commonly used variable tags.

d. Input Variables table displays information about variables. Most attributes can be edited, except for the
Name column within the Input Variables table. The rows for input variables are color coded depending
on whether they are set by an edge from results in another node. White rows are not connected. Yellow
rows are set by a tear edge. These variables serve as initial guesses but their value may change once the
simulation has run. Red rows are set by an edge that is not a tear edge. The value set for these inputs does
not matter and it may change once the simulation has run.

12. Output Variables is a variable table similar to the Input Variables table for node output variables. This area is
displayed by clicking Output Variables.

13. Settings displays simulation settings. A description is provided for each setting. The available settings vary
depending on simulation.

Node Variables

Variables in the node editor are grouped into two sections, inputs and outputs. The input and output variable tables are
accessible as described in the previous section. The contents of the variable tables are described here.

The columns in the input variable list are:

• Name is the name of the variable,

• Value is the current value,

• Unit is the unit of measure,

• Type is the data type (float, int, or str),

• Default is the default value,

• Min is the minimum value,

• Max is the maximum value,

• Description is a description string,

• Tag is a list of strings that can be used to attach additional information to a variable

• Distribution is a distribution type,

• Param1 is the first parameter of a parametric distribution the exact meaning depends on the selected distribution,
and

• Param2 is the second parameter of a parametric distribution the exact meaning depends on the selected distri-
bution.

The minimum and maximum values are not enforced when running simulations. A value can be given outside the
range. Optimization and UQ features make use of these values to set upper and lower bounds on decision variables or
sampling. The distribution information is used when setting up sampling for UQ. In the future, this may also be used for
things like optimization under uncertainty. Integer and string type variables cannot currently be used as optimization
decision variables, or sampled with the UQ tool.

20 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

The rows of the input variable table are color coded. Some of the input variables may be set by connections to other
nodes. White rows are variables who’s values are not set by a connection. The variables that are red have values set by
a connection, and the value given will be overwritten and does not matter. The values that are colored yellow are inputs
set by a connection that is a tear stream. The values of these variables serves as an initial guess for solving recycles.

The output variable table is similar to the input table, however it only contains the columns: Name, Value, Unit, Type,
Description, and Tags. The value of the outputs may not correspond to the inputs until the simulation has been run.

Node Script

There are three type of Node Script that can be used: (1) Pre runs before a node simulation, (2) Post runs after a node
simulation, and (3) Total scripts how a node runs the simulation.

Figure Node Script Tab illustrates the Node Script tab of the Node Editor with calculations for an optimization test
problem.

Fig. 10: Node Script Tab

Node scripts can be any valid Python code. The input and output variables for node scripts are stored in dictionaries
x and f. The dictionary keys are the variable names. The f dictionary is used to update the node variables after the
calculations are executed.

Edge Editor

The Edge Editor is illustrated in Figure Edge Editor. The Edge Editor can be used to set connections between node
variables.

Fig. 11: Edge Editor

1. Index is the index of the current edge. The current edge can be changed by selecting an index from the drop-down
menu, but since the index is not a very meaningful identifier it is usually more convenient to select the edge to
edit with the graphical selection tool.

2. Origin Node is the node where an edge starts. This may be edited by selecting a different node from the drop-
down menu.

3. Destination Node is the node to which the edge goes.

4. Curve can be a positive or negative number. The greater the magnitude of number, the more curved an edge will
appear in the flowsheet. This setting is used to keep edges from overlapping in the flowsheet display.

5. Tear marks this edge as a tear. Before a simulation is run, if a valid tear set is not specified, FOQUS locates one.

6. Active specifies whether the edge is active or not. This allows connections to be temporarily disabled.

7. Variable Connections table displays which variables are connected. Inputs or outputs in the origin node can be
connected to inputs in the destination node.

8. Add connection adds a new connection.

9. Remove connection deletes the selected connections.

10. Auto automatically connects variables having the same name. For example, in connecting a simulation to a
spreadsheet to calculate costs there are a large number of variables for which it makes sense that the variables have
the same name in the simulation and spreadsheet. Auto should be used with great care. Connecting variables with
the same name is often not what is wanted. For example two simulations may have a variable named FlowAIn;

3.1. Contents 21

FOQUS Documentation, Release 3.22.dev0

however, it is very unlikely that they should be connected. It is more likely FlowAOut should be connected to
FlowAIn.

Sample Results

Flowsheet evaluations that have been run in a FOQUS session can be viewed by clicking the table button in the flowsheet
toolbar (#13 in Figure Flowsheet Editor. The results are displayed in a table, and the contents can be copied and pasted
into a spreadsheet or exported to a CSV file. Figure Flowsheet Results Table Window show the Flowsheet Results Table
window.

Fig. 12: Flowsheet Results Table Window

1. Menu contains a menu with four sub menus.

1. Import data from files or the clipboard.

2. Export data to files or the clipboard.

3. Edit or delete data.

4. View options for the table.

2. The Current Filter drop-down list enables the user to select a data filter, which can be used to filter and sort
data.

3. Edit Filters enables the user to create or edit data filters.

Error Codes

Error codes are listed in the Flowsheet Results table for the whole flowsheet and for individual nodes. Table Flowsheet
Error Codes shows the flowsheet error codes and Table Node Error Codes shows the node error codes. The most
common flowsheet error is 1, a node calculation failed. The most common node error is 7, Turbine simulation error.
These errors are typically caused by a simulation that fails to converge or has some other calculation error (e.g., ACM
does not converge or an Excel spreadsheet simulation with a division by 0 error).

22 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

Table 1: Flowsheet Error Codes

Code Meaning
-1 Did not run or finish
0 Success
1 A simulation/node failed to solve
2 A simulation/node failed to solve while solving tears
3 Failed to create a worker node
5 Unknown tear solver
11 Wegstein failed, reached iteration limit
12 Direct failed, reached iteration limit
16 Presolve node error
17 Postsolve node error
19 Unhandled exception during evaluation (see log)
20 Flowsheet thread terminated
21 Missing session name
40 Error connecting to Turbine
50 Error loading session or inputs
100 Single node calculation success
201 Cycle in determining calculation order (invalid tear set)

Table 2: Node Error Codes

Code Meaning
-1 Did not run or finish
0 Success
1 Simulation error (see log)
3 Exceeded maximum wait time
4 Failed to create Turbine session ID
5 Failed to add Turbine job
6 Exceeded maximum run time
7 Turbine simulation error
8 Failed to start Turbine job
10 Failed to get Turbine jobs status
11 Flowsheet thread terminated
20 Error in node script
23 Could not convert Numpy value to list
27 Cannot read variable result (see log)

3.1.2 Tutorial

Tutorial 1: Creating a Flowsheet

The Basics

This tutorial provides information about the basic use of FOQUS and setting up a very simple flowsheet. A single
node flowsheet will be created that performs a simple calculation using a square root so that simulation errors can be
observed when a negative input value is provided.

This tutorial will show the user the procedure for creating a flowsheet in FOQUS. However, if the user is interested, the
finished flowsheet is available in: examples/tutorial_files/Flowsheets/Tutorial_4

3.1. Contents 23

FOQUS Documentation, Release 3.22.dev0

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Start FOQUS (see Section Getting Started).

2. In the session form enter the Session Name as “Simple_Flow” (Figure Setting the Session Name).

Fig. 13: Setting the Session Name

3. Set the session description.

a. Select the Description tab (Figure Setting the Session Description).

b. Type the description shown in Figure Setting the Session Description. The buttons above the Description
tab box can be used to format the text.

Fig. 14: Setting the Session Description

4. Click the Flowsheet button at the top of the Home window (Figure Flowsheet, Input Variables).

5. Add a node named “calc.”

a. Click the Add Node button in the toolbar on the left side of the Home window.

b. Click a location on the gridded flowsheet area.

c. Enter the node name “calc” in the dialog box.

6. Click the Select Mode button in the toolbar.

7. Open the Node Editor by clicking the Node Editor button in the toolbar.

8. Add input variables to the node. (When linking a node to an external simulation the input and output variables
are populated automatically, and this step is not necessary.)

a. Click + above the Input Variables table.

b. Enter x1 in the variable Name dialog box. Enter 1 for the variable size, -2 for the min, 2 for the max, and
1 for the value.

c. Click + above the Input Variables table.

d. Enter x2 in the variable Name dialog box. Enter 1 for the variable size, -1 for the min, 4 for the max, and
4 for the value.

Fig. 15: Flowsheet, Input Variables

9. Add an output variable to the node. (When linking a node to an external simulation the input and output variables
are populated automatically.)

a. Click Output Variables to show the Output Variables table (Figure Flowsheet, Output Variables).

b. Click + above the Output Variables table to add a variable.

c. Enter z in the output Name dialog box.

24 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

Fig. 16: Flowsheet, Output Variables

In this example, the node is not linked to any external simulation. The FOQUS nodes contain a section called node
script, which can be used to do calculations before, after or instead of a simulation linked to the node. The node script
can be used for things such as unit conversion, simple calculations, or simulation convergence procedures. The node
scripts are written as Python. The Input Variables are contained in a dictionary named x and the Output Variables
are contained in a dictionary named f. The dictionary keys are the variables names shown in the input and output tables.
Only Output Variables can be modified by a node script.

10. Add a calculation to the node.

a. Click the Node Script tab (Figure Node Calculation).

b. Enter the following code into the Python code box:
f['z'] = x['x1']*math.sqrt(x['x2'])

11. Click the Variables tab.

12. Click the Run button (Figure Node Calculation).

The flowsheet should run successfully and the output value should be 2. Rerun the flowsheet with a negative value for
x2, and observe the result. The simulation should report an error.

Fig. 17: Node Calculation

13. Save the FOQUS session.

a. Click the Session drop-down menu at the top of the Home window (Figure Save Session).

b. Click Save. The exact location of save in the menu depends on whether or not the data management frame-
work is enabled.

c. The Change Log entry can be left blank.

d. The default file name is the session name. Change the file name and location if desired.

Fig. 18: Save Session

Automatically running FOQUS for a set of user-defined input conditions

This procedure requires the Uncertainty Tab.

Therefore, the instructions for this procedure can be found in the documentation under:

Uncertainty Quantification / Tutorial / Simulation Ensemble Creation and Execution / Automatically running FOQUS
for a set of user-defined input conditions

The link for these instructions is shown below:

https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/sim.html

3.1. Contents 25

https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/sim.html

FOQUS Documentation, Release 3.22.dev0

Tutorial 2: Creating a Flowsheet with Linked Simulations

Note: This tutorial requires the user to have Aspen Custom Modeler installed on their machine.

Note: This tutorial utilizes SimSinter and Turbine, two optional software packages that integrate with FOQUS to run
Aspen and Excel models. The installation instructions are located at Install Turbine and SimSinter (Windows Only).

This tutorial is referenced by other tutorials. Save the flowsheet in a convenient location for future use.
This tutorial demonstrates how to link simulations to nodes, and how to connect nodes in a flowsheet. Two models are
used: (1) a bubbling fluidized bed model in ACM and (2) a cost of electricity (COE) model in Excel. The COE model
estimates the cost of electricity for a 650 MW (net before adding capture) supercritical pulverized coal power plant
with solid sorbent post combustion CO2 capture process added.

The files for this tutorial is located in: examples/test_files/Optimization/Model_Files.

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Start FOQUS. The Session window displays (Figure Session Setup).

2. Enter “BFB_opt” in Session Name (without quotes).

3. Click the Description tab. The problem description box displays and is shown in (Figure Session Description).

4. In the problem description box enter information about the problem being solved in the FOQUS session; this
information can be more extensive than what is shown in the example.

5. Save the session file. Click Save Session from the Session drop-down menu. Enter change log information and
a file name when prompted. The Creation Time in metadata page will be the time the session is first saved. The
Modification Time will be the last time the session was saved. The ID is a unique identifier that changes each
time the user saves the simulation. The Change Log tab provides a record of the changes made each time the
session is saved.

Fig. 19: Session Setup

Fig. 20: Session Description

There are two models needed for this optimization problem: (1) the ACM model for the BFB capture system and (2)
the Excel cost estimating spreadsheet. These models are provided in the examples/test_files/Optimization/
Model_Files directory. There are two SimSinter configuration files: (1) BFB_sinter_config_v6.2.json for the
process model and (2) BFB_cost_v6.2.3.json for the cost model. The next step is to upload the models to Turbine.

6. Open the Add/Update Model to Turbine dialog box (Figure Open Upload to Turbine Dialog).

7. In this case, the SimSinter configuration files have already been created. If a SimSinter configuration file needs
to be created for the simulation, Create/Edit displays the SimSinter configuration GUI (see Figure Upload to
Turbine Dialog). See the SimSinter documentation or Chapter Simulation Standard Interface (SimSinter) for
more information.

8. Click Browse to select a SimSinter configuration file (Figure Upload to Turbine Dialog). Once the SimSinter
configuration file is selected, the simulation file and sinterconfig file is automatically added to the files to upload.

26 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

The application type is entered automatically. If there are additional files required for the simulation, those files
can be added by clicking Add File.

9. Enter the simulation name in Simulation Name. This name is determined by the user, but will default to the
SimSinter configuration file name. For this tutorial use BFB_v6_2.

10. Click OK to upload the simulation.

11. Repeat the upload process for the cost model. Name the model
BFB_v6_2_Cost.

Fig. 21: Open Upload to Turbine Dialog

Fig. 22: Upload to Turbine Dialog

The next step is to create the flowsheet. Figure Flowsheet Editor illustrates the steps to draw the flowsheet.

12. Click Flowsheet at the top of the Home window.

13. Click Add Node mode.

14. Add two nodes to the flowsheet. Name the first node “BFB” and the second node “cost”.

15. Click Add Edge mode.

16. Click the BFB node followed by the cost node.

17. Click Selection mode and select the BFB node.

18. Click Toggle Node Editor. The Node Editor displays as illustrated in Figure Node Editor.

Fig. 23: Flowsheet Editor

Each node must be assigned the appropriate simulation. Use the Node Editor to set the simulation type and the simu-
lation name from simulation uploaded to Turbine. The Node Editor is illustrated in Figure Node Editor

19. Under Model and Type, set the simulation Type to Turbine. This indicates that the simulation is to be run with
Turbine.

20. Under Model, set the simulation of the BFB node to BFB_v6_2.

21. The Variables and Settings are automatically populated from the SimSinter configuration file. Variable values,
Min/Max, and descriptions can be changed; however, for this problem, the values taken from the SimSinter
configuration should not be changed.

22. Repeat the process for the cost node, assigning it the BFB_v6_2_cost simulation.

The connections between variables in the BFB simulation and the cost estimation spreadsheet must be set, so that
required information can be transferred from the BFB simulation to the cost simulation.

23. Click Toggle Node Editor to hide the Node Editor (Figure Flowsheet Editor).

24. Select the edge on the flowsheet with the Selection tool.

25. Click Toggle Edge Editor to show the Edge Editor. The Edge Editor is shown in Figure Edge Editor.

26. For convenience, all of the variables that should be connected from the ACM model to the Excel spreadsheet
have been given the same names in their SimSinter configuration files. To connect the variables click Auto in the
Edge Editor. Auto connects variables of the same name. Since this is often not desired, the Auto button should
be used carefully. There should be 46 connected variables.

3.1. Contents 27

FOQUS Documentation, Release 3.22.dev0

Fig. 24: Node Editor

Fig. 25: Edge Editor

28 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

The flowsheet should now be ready to run. Test the flowsheet by executing a single evaluation before setting up the
optimization problem.

27. Click Run in the Flowsheet Editor (Figure Flowsheet Editor).

28. The flowsheet may take a few minutes to run. The BFB simulation takes a significant amount of time to open in
ACM. While running optimization, the evaluations take less time because the simulation remains opened. The
simulation should complete successfully. A message box displays when the simulation is done. The status bar
also indicates the simulation is running.

29. While the simulation is running, Stop is enabled.

30. Once the simulation runs successfully, Save the FOQUS session again, and keep it for use in later tutorials.

Tutorial 3: Flowsheets with Recycle

This section provides a tutorial on working with flowsheets containing recycle. Sections Tutorial 1: Creating a Flow-
sheet and Tutorial 2: Creating a Flowsheet with Linked Simulations provide tutorials for creating flowsheets, in this
section a pre-constructed flowsheet is used.

The file for this tutorial is Mass_Bal_Test_02.foqus, and this file is located in examples/tutorial_files/
Flowsheets/Tutorial_3.

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Open FOQUS.

3. Open the examples/tutorial_files/Flowsheets/Tutorial_3/Mass_Bal_Test_02.foqus file.

1. Open the Session drop-down menu on the right side of the Session button (Figure Flowsheet with Recycle).

2. Select Open Session from the drop-down menu.

3. Locate Mass_Bal_Test_02.foqus in the file browser, and open it.

4. Click Flowsheet button from the toolbar at the top of the Home window.

The flowsheet is shown in Figure Flowsheet with Recycle. The flowsheet consists of two reactors in recycle loops. The
flowsheet contains mixers, reactors, separators, and splitters. Each node uses a set of simple calculations in the node
script section. The tear edges are shown in light blue.

Fig. 26: Flowsheet with Recycle

5. Inspect a node.

1. Make sure the Selection tool is selected (Figure React_01 Node.

2. Open the Node Editor by clicking the Node Edit button in the left toolbar in the Flowsheet view.

3. Click the “React_01” node.

4. Click Input Variables table. Note: Some input rows are colored red. This denotes that their values are set
by output of the previous flowsheet node by the edge connecting “Mix_01” to “React_01.”

5. Click the Node Script tab.

6. Note the equations. Input Variables are stored in the x dictionary and Output Variables are stored in the
f dictionary.

3.1. Contents 29

FOQUS Documentation, Release 3.22.dev0

6. Click the gear icon in the left toolbar (see Figure React_01 Node. The tear solver settings are shown in Figure
Tear Solver Settings.

Fig. 27: React_01 Node

Fig. 28: Tear Solver Settings

7. Remove the tear edges.

1. Close the Node Editor.

2. Open the Edge Editor. Click the Edge Editor icon in the left toolbar (see Figure Edge Edit.

3. Click the edge between “React_01” and “Sep_01.”

4. In the Edge Editor, clear the Tear checkbox.

5. Repeat for the other tear edge.

8. Close the Edge Editor.

Fig. 29: Edge Edit

There should now be no tear edges in the flowsheet. The user can select tear edges or FOQUS can automatically select
a set. If there is not a valid set of tear edges marked when a flowsheet is run, tear edges will automatically be selected.

9. Automatically select a tear edge set by clicking the Tear icon in the left toolbar (see Figure Edge Edit).

10. Open the Node Editor and look at node “Sep_01.” In the Input Variables table, notice that some of the input lines
are colored yellow. The yellow inputs serve as initial guesses for the tear solver. The final value will be different
from the initial value.

11. Click the Run button on the left toolbar. The flowsheet should solve quickly.

12. The results of the completed run are in the flowsheet. An entry will also be created in the Flowsheet Results data
table (see Section Tutorial 4: Flowsheet Result Data.

Tutorial 4: Flowsheet Result Data

Flowsheet evaluation results are stored in a table in the FOQUS session. This data can be used for many purposes. The
flowsheet evaluations may be single runs, part of an optimization problem, or part of a UQ ensemble. This tutorial
provide information about sorting, filtering, and exporting data.

The FOQUS file for this tutorial is Simple_flow.foqus, and this file is located in examples/tutorial_files/
Flowsheets/Tutorial_4.

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

The Simple_flow.foqus file is similar to the one created in the tutorial Section Tutorial 2: Creating a Flowsheet
with Linked Simulations, but it has been run an additional 100 times using a UQ ensemble (see Tutorial 1: Simulation
Ensemble Creation and Execution).

1. Open FOQUS.

30 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

2. Open the examples/tutorial_files/Flowsheets/Tutorial_4/Simple_flow.foqus session from the
example files.

3. Click the Flowsheet button from the Home window.

4. Click Flowsheet Data in the toolbar on the left side of the Home window.

Fig. 30: Flowsheet Results Data Table, All Data

A data table should be displayed like the one shown in the figure below. There are 102 flowsheet evaluations. The first
two evaluations are single runs, as can be seen in the SetName column, and the remaining 100 evaluation are from a
UQ ensemble. The Error column shows several of the evaluations resulted in an error from a negative number being
passed to the square root function.

This tutorial is broken up into mini-tutorials in the remaining subsections, which can be done independently. They
each use the example data file described above.

Sorting Data

1. Open FOQUS.

2. Open the Simple_flow.foqus session from the example files.

3. Click Flowsheet in the main toolbar at the top of the FOQUS Home window.

4. Click Flowsheet Data in the toolbar on the left side of the Home Window.

5. Click Edit Filters.
6. Click New Filter.

7. Enter “Sort1” as the new filter name.

8. Click New Filter.

9. Enter “Sort2” as the new filter name.

10. Select “Sort1” from the Filter drop-down list.

11. Enter ["-result"] as the Sort by Column. Include the square brackets. The square brackets indicate that there
is a list of sort terms, although in this case there is only one. If multiple search terms are given, the additional
terms will be used to sort results having the same value for the previous terms. The “-” in front of result indicates
the results should be sorted in reverse. The names of the sort terms come from the column headings, and are
case sensitive.

12. Click Done to save the filters and return to the results table.

Fig. 31: Sort1 Data Filter

14. Select “Sort1” from the Current Filter drop-down list.

15. The results are shown in below. The data should be sorted in reverse alphabetical order by result. Some of the
columns are hidden to make the relevant results easier to see.

Fig. 32: Sort1 Data Filter Results

16. Click Edit Filters.

3.1. Contents 31

FOQUS Documentation, Release 3.22.dev0

17. Select “Sort2” from Filter drop-down list.

19. Enter ["err", "-result"] in the Sort Term field. This will sort the data first by Error code then by result
in reverse alphabetical order.

20. Click Done.

Fig. 33: Sort2 Data Filter

21. Select “Sort2” in the Current Filter drop-down list.

22. The results are shown in below. The data should be sorted so all Error code zero results are first then sorted in
reverse alphabetical order by result.

Fig. 34: Sort2 Data Filter Result

Filtering Data

1. Open FOQUS.

2. Open the Simple_flow.foqus session from the example files.

3. Click the Flowsheet button in the Home window.

4. Click the Results Data button (Table icon in left toolbar).

5. In the data table dialog, click Edit Filters.
6. Click New Filter and enter “Filter1” in the Filter field as the new filter name.

The filter expression is a Python expression. The c("Comlumn Name") function returns a numpy array containing the
column data. The expression should evaluate to a column of bools where rows containing True will be included in
the filtered results and rows containing False will be excluded. If combining multiple logical expressions the numpy
logical functions https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.logic.html should be used. Numpy is im-
ported as np

8. In this example, results without errors in the “Single_runs” should be selected. In the filer expression field enter
np.logical_and(c("err") == 0, c("set") == "Single_runs")

10. Click Done.

Fig. 35: Filter1 Data Filter

11. In the data table dialog, select “Filter1” from the Current Filter drop-down list.

12. The result is displayed in the Figure below.

32 Chapter 3. Flowsheets and Settings

https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.logic.html

FOQUS Documentation, Release 3.22.dev0

Fig. 36: Filter1 Data Filter Result

Exporting Data

This tutorial uses a spreadsheet program such as Excel or Open Office. The exported data is subject to the selected
filter. See the previous tutorials in this section for more information about sorting and filtering data to be exported.

Clipboard

FOQUS can export data directly to the Clipboard. The data can be pasted into a spreadsheet or as text. Copying data
to the Clipboard eliminates the need for an intermediate file when creating spreadsheets.

1. Open FOQUS.

2. Open a spreadsheet program.

3. Open the Simple_flow.foqus session from the example files.

4. Click the Flowsheet button in the Home window.

5. Click the Results Data button (Table icon in left toolbar).

6. Click on the Menu drop-down list in the data table dialog.

7. Select “Export” from the Menu drop-down list.

8. Click Copy Data to Clipboard.

9. Select Paste in the spreadsheet program. The data table in FOQUS should paste into the spreadsheet. Filters can
be used to sort or reduce the exported data.

CSV File

CSV (comma separated value) files can be read by almost any spreadsheet program, and are common formats readable
by many types of software. FOQUS exports CSV files using the column headings from the data table as a header.

1. Open FOQUS.

2. Open a spreadsheet program.

3. Open the Simple_flow.foqus session from the example files.

4. Click the Flowsheet button in the Home window.

5. Click the Results Data button (Table icon in left toolbar).

6. Click the Menu drop-down list.

7. Select “Export” from the Menu drop-down list.

8. Click Export to CSV File.

9. Enter a file name in the file dialog.

10. In the spreadsheet program, open the CSV file exported in the previous step.

3.1. Contents 33

FOQUS Documentation, Release 3.22.dev0

Tutorial 5: Using the AWS FOQUS Cloud

The AWS FOQUS Cloud may be used instead of TurbineLite. TurbineLite, used by default, runs simulations (e.g.,
Aspen Plus) on the user’s local machine. The AWS FOQUS Cloud has several potential advantages over TurbineLite,
while the main disadvantage is the effort required for installation and configuration. Some reasons to run a on the AWS
FOQUS Cloud are:

• Users don’t have to install Aspen on their local machine.

• Users with Apple Macintosh or Linux-based systems can run flowsheets with Aspen simulations on the AWS
FOQUS Cloud.

• Simulations can be run in parallel. The AWS FOQUS Cloud can scale up to hundreds of virtual machines
configured to run FOQUS flowsheet consumers. FOQUS consumers are basically additional instances of FOQUS
running on remote systems which can run a FOQUS flowsheet.

• Simulations can be run on machines other than the user’s, so as not to tie-up the user’s machine running simula-
tions.

Running on AWS FOQUS Cloud

The steps below demonstrate how to set up FOQUS to run flowsheets remotely if the user would like to run FOQUS in
parallel in AWS (see Figure Remote Turbine Settings).

1. Obtain a user name, password, and URL. Ask on the ccsi-support list

2. Open FOQUS.

3. Click Settings at the top right of the Home window (Figure Run Method Settings).

4. Select “Remote” from the FOQUS Flowsheet Run Method drop-down list. A message box will appear. The
user will be warned that the models that have been uploaded to Turbine Local may not be available in Turbine
Remote Gateway, which means that the user may need to upload the models into Turbine again (please see Step
7).

5. Click the Turbine tab; this displays the Turbine settings shown in Figure Remote Turbine Settings.

Fig. 37: Run Method Settings

6. Create a Turbine configuration file; this contains your password in plain text, so it is very important that if you
are allowed to choose your own password, you choose one that is not used for any other purpose.

a. Click New/Edit next to the Turbine Configuration (remote) field. The Turbine Configuration window
displays (see Figure Remote Turbine Settings).

b. Select “Cluster/Cloud” from the Turbine Gateway Version drop-down list in the Turbine Configuration
window.

c. Enter the AWS FOQUS Cloud URL in the Address field.

d. Enter the User name and Password.

e. Click Save as and enter a new file name.

f. Set the remote Turbine configuration file. Click Browse next to the Turbine Configuration (remote) field.
Select the file created in Step 6e.

Fig. 38: Remote Turbine Settings

34 Chapter 3. Flowsheets and Settings

FOQUS Documentation, Release 3.22.dev0

At this point FOQUS is ready to use the AWS FOQUS Cloud. The last step is to ensure that all simulations referenced
by flowsheets to be run are uploaded to the AWS FOQUS Cloud.

7. Upload any necessary simulations (see Section Adding or Changing Turbine Simulations and the tutorial in
Section Tutorial 2: Creating a Flowsheet with Linked Simulations)

Once all settings are specified there is no apparent difference between running flowsheets locally or on the AWS FOQUS
Cloud, and FOQUS can readily be switched between the two.

3.1. Contents 35

FOQUS Documentation, Release 3.22.dev0

36 Chapter 3. Flowsheets and Settings

CHAPTER

FOUR

OPTIMIZATION

4.1 Contents

4.1.1 Reference

The simulation based optimization tool provides a plug-in system where different derivative free optimization (DFO)
solvers can be used with FOQUS. Several solvers are provided with FOQUS. The CMA-ES solver (Hansen 2006) is
a good global derivative free optimization (DFO) solver. The NLopt library provides access to several DFO solvers
(Johnson 2015). SLSQP and BFGS from the Scipy module are also provided (Jones et al. 2015). Since FOQUS
does not generally have access to derivative information the Scipy solvers rely on finite difference approximations, and
should only be used with well-behaved functions. Due to convergence tolerances in process simulators, finite difference
approximations may not be good for many of FOQUS’s intended applications.

CMA-ES offers a restart feature, which can be used to resume an optimization if it is interrupted for any reason. Other
solvers may use an auto-save feature, which does not provide the ability to restart, but will allow optimization to start
from the best solution found up to the point the optimization was interrupted. Samples making up the population in
CMA-ES can be run in parallel. The NLopt and Scipy plugins do not offer parallel computing for standard optimization.
For any solver, parallel computation can be used for parameter estimation and optimization under uncertainty, where
multiple flowsheet evaluations go into an objective function calculation.

Problem Set Up

See Chapter Flowsheets and Settings for information about setting up a flowsheet in FOQUS. Once the flowsheet has
been set up and tested, an optimization problem can be added. FOQUS allows multiple flowsheet evaluations to be
used to calculate a single objective function value. This allows FOQUS to do parameter estimation and scenario based
optimization under uncertainty. There are three types of variables used in the optimization problem: (1) fixed variables
do not change during the optimization, (2) decision variables are modified by the optimization algorithm to find the best
value of the objective function, and (3) sample variables, which are used to construct the multiple flowsheet evaluations
that can go into an objective calculation. If no sample variables are defined, each objective function value will be based
on a single flowsheet evaluation. Figure Optimization Variable Selection shows the Variables tab selection form.

Fig. 1: Optimization Variable Selection

1. The Variables tab contains the form for variables selection.

2. The Variable column shows the name of input variables in the flowsheet. If a variable is set by a connection
to another variable through an edge, it is not shown in the table. The format for a variable name is {Node
Name}.{Variable Name}.

3. The Type column allows the variables to be assigned as one of three types (1) fixed, (2) decision, or (3) sample.

37

FOQUS Documentation, Release 3.22.dev0

4. The Scale column allows the scaling method to be set for each variable. Decision variables must be scaled.
Scaling is ignored for other variables. In the FOQUS example files, there is a scaling spreadsheet that provides a
demonstration of the different scaling methods. The upper and lower bound are used in the scaling calculations.
Regardless of the scaling method, the optimizer sees the decision variables as running from 0 at their minimum
to 10 at their maximum.

5. The Min and Max columns are used to define the upper and lower bounds for the variables. FOQUS requires
that all optimization problems be bounded.

6. The Value column provides the starting point for the optimization. How the starting point is used depends on the
optimization method. The starting point for sample variables is irrelevant. Fixed variables will remain at their
starting point during the optimization.

The sample variables define a set of samples that will be used to calculate an objective function. For each objective
function, the decision variables are fixed at values set by the optimization solver, and the flowsheet is evaluated for each
row on the sample table. The results of the samples can be used to calculate the objective function. Using the Samples
tab is optional. If no sample variables are set, each objective function value will be based on a single simulation. Figure
Optimization Sample Table shows the Samples table form.

Fig. 2: Optimization Sample Table

1. The Samples tab contains the table used to define samples for objective function calculations. If there are no
sample variables, the table should be empty.

2. Add Sample adds a row to the Samples table.

3. Delete Samples deletes the selected rows from the Samples table.

4. Generate Samples opens a dialog box that provides a selection of methods to generate samples or read samples
from a file.

5. Clear Samples clears the Samples table.

Once the variables and (optionally) samples have been selected, the objective function and constraints can be defined.
FOQUS is set up to handle multi-objective optimization, but no multi-objective optimization plug-ins are currently
provided in the FOQUS installer, so some of the options may seem to be extraneous. There are two methods for
entering the objective function and constraints into FOQUS: (1) Simple Python expressions and (2) a more extensive
Python function. Python expressions are easier and sufficient for most cases. If the objective function is complicated
it may be necessary to write a Python function, which can be as complex as needed.

The variables used in the Python code for the objective function or constraints are stored in two Python dictionaries, “f”
for outputs and “x” for inputs. There are two ways to index the dictionaries depending on whether or not sample vari-
ables are used. For an input variable with sampling, the indexing is x[Sample Index][’Node Name’][’Variable
Name’][Time Step Index]. If no sample variables are defined, the sample index is not needed, so the indexing
would be, x[’Node Name’][’Variable Name’][Time Step]. Node Name and Variable Name are strings so they
should be in quotes. The sample and time step indexes are integers. For steady state simulations, the time step should
be 0.

Figure Optimization Simple Objective Function shows the form for entering the objective function and constraints as
Python expressions.

Fig. 3: Optimization Simple Objective Function

1. The Objective/Constraints tab contains the form used to enter the objective function and constraints.

2. The drop-down list enables the selection of either the “Simple Python Expression” or “Custom Python” form of
the objective function.

38 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

3. + adds an objective function to the table. The solvers currently available are single objective and will only use
the first objective function.

4. - removes the selected objective from the table.

5. The Python expression for the objective function can be entered in the Expression column.

6. The Penalty Scale column is intended for use with multi-objective solvers and allows the constraint violation
penalty to be applied differently to objective functions with different magnitudes.

7. The Value for Failure column contains the value to be assigned to the objective function if the objective cannot
be evaluated for any reason. The value should be higher than the expected highest value for a successful objective.

8. + adds an inequality constraint.

9. - removes selected inequality constraints.

10. The inequality constraints are in the form 𝑔(x) ≤ 0. The Expression column contains the Python expression for
𝑔(x).

11. The Penalty Factor contains the coefficient 𝑎 used in calculating the penalty for a constraint violation, see
Equations (4.1) to (4.3).

12. The Form column contains a selection of different methods to calculate a constraint penalty.

13. Check Input checks the problem for any mistakes that can be detected before running the optimization.

14. Variable Explorer enables the user to browse the variables in the simulation. They can be copied and pasted
into the Python expression. The variables are provided without the sample index.

The calculations for each type of constraint penalty are given in Equations (4.1) to (4.3).

Linear penalty form: 𝑝𝑖 =

{︃
0 if 𝑔𝑖(x) ≤ 0

𝑎× 𝑔𝑖(x) if 𝑔𝑖(x) > 0
(4.1)

Quadratic penalty form: 𝑝𝑖 =

{︃
0 if 𝑔𝑖(x) ≤ 0

𝑎× 𝑔𝑖(x)2 if 𝑔𝑖(x) > 0
(4.2)

Step penalty form: 𝑝𝑖 =

{︃
0 if 𝑔𝑖(x) ≤ 0

𝑎 if 𝑔𝑖(x) > 0
(4.3)

If the Simple Python Expression method of entering the objective function does not offer enough flexibility, the Custom
Python method can be used. The Custom Python method enables the user to enter the objective calculation as a Python
function, which also should include any required constraint penalties.

Figure Custom Objective Function shows the Custom Python objective form. The top text box provides instructions for
writing a custom objective function. The bottom text box provides a place to enter Python code. The numpy and math
modules have been imported and are available as numpy and math. To use the Custom Python objective, the user must
define a function called “objfunc(x, f, fail).”” The three arguments are: (1) “x” is the dictionary of input variables, (2)
“f” is the dictionary of output variables, and (3) “fail” is a boolean vector that indicates whether a particular sample
calculation has failed. The “objfunc” function should return three values: (1) a list of objective function values for
multi-objective optimization (in most cases with single objective optimization this will be a list with one value), (2) a
list of constraint violations, and (3) the total constraint penalty. The constraint violation and penalty information are
only used for debugging, so they are not required. It is safe to return [0] and 0 for the constraint information regardless
of whether a constraint penalty has been added to the objective.

Fig. 4: Custom Objective Function

The code in Figure Objective Function Code provides an example of a custom objective function for parameter estima-
tion. The objective function minimizes the sum of the differences between simulation and empirical data. In this case

4.1. Contents 39

FOQUS Documentation, Release 3.22.dev0

the decision variables would be model parameters. The first line defines a function with three arguments. The “x” and
“f” arguments are the input and output variables. The variable indexing is explained in the simple objective function
section. The “fail” argument is a boolean vector where element “i” is true if sample “i” failed. If there are no sample
variables, “fail” will only have one element.

The “if” in the function determines if any flowsheet evaluation failed, and assigns a bad objective function value if
so. If all the flowsheet evaluations where successful, the results are used to calculate the objective function. In the
objective function calculation, Python list comprehension is used to calculate the sum of squared errors. In this case,
no constraint penalty is needed. The objective function is returned as a list with only one element. The last two return
values are debugging information for constraints. In this case, the “zeros” are just place holders and have no real utility.

Listing 1: Objective Function Code

def objfunc(x, f, fail):
if any(fail): # any simulation failed

obj = 100000
else: #simulations successful

obj=sum([(f[i]['Test']['y'][0] - x[i]['Test']['ydata'][0])**2\
for i in range(len(f))])

return [obj], [0], 0

Solver Options

The Solver tab in the Optimization button tool enables the selection of the DFO method and setting of solver param-
eters. Figure Optimization Solver Form illustrates the solver form.

Fig. 5: Optimization Solver Form

Elements of the solver form are:

1. Select Solver drop-down list, which enables the user to select from available DFO solvers.

2. Description text box provides a description of the selected DFO solver.

3. Solver Options table contains the solver settings and a description of each option. The settings depend on the
selected plug-in.

Running Optimization

The optimization monitor is displayed under the Run tab in the Optimization button tool. The optimization monitor,
illustrated in Figure Optimization Monitor Form, is used to monitor the progress of the optimization as it runs.

Fig. 6: Optimization Monitor Form

Elements of the optimization monitor are:

1. Start starts the optimization.

2. Stop stops the optimization. The best solution found when optimization is stopped is stored in the flowsheet.

3. Update delay is how often the user interface communicates with the optimization thread to update the display.

4. Optimization Solver Messages displays output from the optimization solver.

40 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

5. Best Solution Parallel Coordinate Plot displays the values of the decision variables scaled. This plot is helpful
in identifying when variables are at, or near, their bounds.

6. Objective Function Plot displays the objective function value at each iteration.

7. Status Box displays the current iteration, how many samples have been run, how many sample were successful,
and how many failed.

8. Clear deletes solver messages from the solve message box.

As the optimization runs, the FOQUS flowsheet is updated to include the best solution found. If sampling is used, the
first sample in the best objective function is stored in the flowsheet. If for any reason the optimization terminates, the
best solution found is available in the flowsheet. The results for all flowsheet evaluations done for the optimization are
available in the Results table in the Flowsheet Editor.

4.1.2 Tutorial

Tutorial 1: Optimization

This tutorial is a step-by-step walk through of simulation-based optimization. This tutorial builds on the tutorial in
Section Tutorial 2: Creating a Flowsheet with Linked Simulations.

The files for this tutorial are located in: examples/test_files/Optimization/Model_Files

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Open FOQUS.

2. Load the FOQUS session from the tutorial “Creating a Flowsheet with Linked Simulations” in Section Tutorial
2: Creating a Flowsheet with Linked Simulations or if that tutorial has not yet been completed, complete it first.

Problem Set Up

If the simulation runs successfully and the results are reasonable, proceed to define the optimization problem. There
are four steps to setting up the optimization problem: (1) select the variables, (2) define samples (optional), (3) define
the objective function, and constraints and (4) select and configure the solver.

3. Select the Optimization button from the toolbar at the top of the Home window (Figure Optimization Problem
Variables). Select the Variables tab.

4. Select “Decision” from the drop-down list in the Type column as the variable type for all 17 variables shown. If
more than 17 variables are shown, the edge connecting the “BFB” node to the “Cost” node was most likely not
configured properly. The scale will automatically change to linear, which is acceptable for most problems.

5. The Min, Max, and Value columns can be changed. The Min and Max columns define the lower and upper
bounds. The Value column specifies the initial point. For this example the defaults are acceptable.

Fig. 7: Optimization Problem Variables

If more than one flowsheet evaluation is used in the objective function calculation (e.g., parameter estimation or opti-
mization under uncertainty), the next step is to setup the samples under the Samples tab. In this case only one evaluation
is used to calculate an objective function value, so the sample setup is not needed. The next step is to define the ob-
jective function and constraints using the form under the Objective/Constraints tab as shown in Figure Optimization
Problem Objective.

4.1. Contents 41

FOQUS Documentation, Release 3.22.dev0

Fig. 8: Optimization Problem Objective

6. Select the Objective/Constraints tab (see Figure Optimization Problem Objective).

7. In the drop-down list, verify “Simple Python Expression” is selected.

8. Add an objective function by clicking + to the right of the Objective Function table.

9. The objective function is the cost of electricity from the cost spreadsheet. Enter:
f.Cost.COE

in the Expression column.

10. Enter 1 in the Penalty Scale column. This setting is used mostly for multi-objective optimization to apply the
constraint penalty to different objectives.

11. Enter 500 in the Value for Failure column. This should be worse than the objective for any non-failed simula-
tions.

12. Add a constraint by clicking + next to the Inequality Constraints table.

13. The constraint is that the fraction of CO2 captured must be greater than or equal to 0.9. The constraint is in the
form 𝑔(x) ≤ 0; therefore, in the Expression column enter:
0.9 - f.BFB.removalCO2.

14. Enter 1000 for the Penalty Factor.

15. The constraint penalty Form should be linear.

16. The Variable Explorer button can be used to help select flowsheet variables.

42 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

Solver Settings

The last step before running the optimization is to select and configure the solver. The solver configuration form is
shown in Figure Optimization Solver Setup.

Fig. 9: Optimization Solver Setup

17. Select the Solver tab (see Figure Optimization Solver Setup).

18. Select “OptCMA” from the Select Solver drop-down list.

19. The default options are acceptable. Solver options are described in the Solver Options table.

Running Optimization

The optimization run form is shown in Figure Optimization Monitor.

Fig. 10: Optimization Monitor

20. Click the Run tab to display the optimization run form (see Figure Optimization Monitor).

21. Click Start.
22. Once the optimization has run for while click Stop.

As the optimization run, the best result found is stored in the Flowsheet. If an optimization is run with sample variables
the first sample in the set with the best objective function will be stored in the flowsheet. All simulation results can be
viewed in the Flowsheet Results table.

The run form displays some diagnostic information as the optimization runs. The parts of the display labeled in Figure
Optimization Monitor are described below.

23. The Optimization Solver Messages window displays information from the solver.

24. The Best Solution Parallel Coordinate Plot shows the value of the scaled decision variables, which is useful
to see where the best solution is relative to the variable bounds.

25. The Objective Function Plot shows the best value of the objective function found as a function of the optimiza-
tion iteration or sample number.

26. While the optimization is running, the status bar shows the amount of time that has elapsed since starting the
optimization.

Tutorial 2: Parameter Estimation

Note: The NLopt solvers are used for the tutorial, but are an optional to the installation. See the install instructions for
more information about installing NLopt.

This tutorial provides a very simple example of using the sampling with optimization. Sampling can be used to do op-
timization under uncertainty where there are several scenarios with differing values of uncertain parameters. Sampling
can also be used to do parameter estimation, where estimated values must be compared against several data points.
This tutorial will focus on parameter estimation.

At any point in this tutorial, the FOQUS session can be saved and the tutorial can be started again from that point.

4.1. Contents 43

FOQUS Documentation, Release 3.22.dev0

The model is given by Equation (4.4). The unknown parameters are 𝑎, 𝑏, and 𝑐. The x and y data are given in Table
x-y Data.

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (4.4)

Table 1: x-y Data

Sample 1 2 3 4 5
x 0 1 2 3 4
y 1 0 3 10 21

The first step is to create a flowsheet with one node. The node will have the input variables: a, b, c, x, and ydata; and
output variable y.

1. Open FOQUS.

2. In the Session Name field, enter “PE_tutorial” (see Figure Session Setup).

3. Click the Flowsheet button in the top toolbar.

Fig. 11: Session Setup

4. Add a node to the flowsheet named “model.”

1. Click Add Node in the left toolbar (see Figure Adding Node and Inputs).

2. Click anywhere on the gridded flowsheet area.

3. Select “model” in the Name drop-down list and then click OK.

5. Click the Selection Mode icon in the left toolbar (see Figure Adding Node and Inputs).

6. Click the Node Editor icon in the left toolbar (see Figure Adding Node and Inputs).

7. In the Node Edit input table, add the variables a, b, c, x, and ydata. The ydata variable will be used as an input
for the known y sample point data, later in the tutorial.

1. Click the Add Input icon (see Figure Adding Node and Inputs).

2. Enter “a” for the variable name in the Name column.

3. Enter -10 and 10 for the min and max in the Min and Max columns for a, b, c, and x.

4. Repeat for all of the inputs.

5. Enter 1 for the value of a, b, and c in the Value column.

6. Enter 2 for the value of x in the Value column.

7. The Value, Min, and Max for ydata do not matter.

8. Click Output Variables (see Figure Adding Outputs).

9. Add the output variable y.

1. Click the Add Output icon (see Figure Adding Outputs).

2. Enter “y” for the variable name in the Name column.

10. Add the model equation to the node.

1. Click the Node Script tab.

44 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

Fig. 12: Adding Node and Inputs

Fig. 13: Adding Outputs

4.1. Contents 45

FOQUS Documentation, Release 3.22.dev0

2. Enter the following code in the calculations box:

f['y'] = x['a']*x['x']**2\
+ x['b']*x['x'] + x['c']

Fig. 14: Adding Node Calculation

11. Return to the Output Variables table in the Node Editor, by clicking on the Variables tab, and selecting Output
Variables.

12. Click Run in the left toolbar in the FOQUS Home window, to test a single flowsheet evaluation and ensure there
are no errors.

13. When the run is complete, there should be no error and the value of y should be 7 in the Output Variables table.

The next step is to setup the optimization. The objective function is to minimize the sum of the squared errors between
the estimated value of y and the observed value of y. There are five data points in Table x-y Data, so there are five
flowsheet evaluations that need to go into the calculation of the objective.

14. Click the Optimization button in the top toolbar of the Home window (see Figure Optimization Variables).

15. Select “Decision” in the Type column drop-down lists for “model.a,” “model.b,” and
“model.c.” The Scale column will automatically be set to linear.

16. Select “Sample” in the Type column drop-down lists for “model.x” and “model.ydata.”

Fig. 15: Optimization Variables

The decision variables in the optimization problem will be changed by the optimization solver to try to minimize the
objective, and the sample variables are used to construct the samples that will go into the objective function calculation.

17. Select the Samples tab (see Figure Optimization Samples).

18. Click Add Sample five times to add five samples.

19. Enter the data from Table x-y Data in the Samples table.

20. For larger sample sets, Generate Samples has an option to load from a CSV file. The CSV file must be saved
as “CSV (MS-DOS)” as the file type, as follows:

The objective function is the sum of the square difference between y and ydata for each sample in Table x-y Data. The
optimization solver changes the a, b, and c to minimize the objective.

21. Click the Objective/Constraints tab.

22. Click the Add Objective icon on the right side of the Objective Function table (see Figure Objective Function).

23. In the Expression column, enter the following (without any line break):

sum([(ff.model.y - xx.model.ydata)**2 for (ff,xx) in zip(f,x)])

The above expression uses Python list comprehension to calculate the sum of squared errors.

The keys for x (the inputs) and f (the outputs) are:
• Dummy variable name for index (i.e., ff for outputs and xx for inputs)

• Node name (i.e., model)

• Variable name (i.e., y and ydata)

46 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

Fig. 16: Sample Variable data (csv file)

Fig. 17: Optimization Samples

Then, the user will need to specify which of the dummy index corresponds to outputs, and which of the dummy
index corresponds to inputs. In this case, ff is for the outputs, and xx is for the inputs. Hence, we have “for (ff,xx)
in zip(f,x)” (without the quotes).

24. Enter 1 for the Penalty Scale.

25. Enter 100 for the Value for Failure.

26. No constraints are required.

Once the objective is set up, a solver needs to be selected and configured. Almost any solver in FOQUS should work
well for this problem with the default values.

27. Click the Solver tab (see Figure Optimization Samples).

28. Select “NLopt” from the Select Solver drop-down list. NLopt is a collection of solvers that share a standard
interface (Johnson 2015).

29. Select “BOBYQA” under the Solver Options table in the Settings column drop-down list.

30. Click the Run tab (see Figure Running Optimization).

31. Click the Start button.

32. The Optimization Solver Messages window displays the solver progress. As the solver runs, the best results found
is placed into the flowsheet.

33. The Best Solution Parallel Coordinate Plot shows the scaled decision variable values for the best solution found
so far.

34. The Objective Function Plot shows the value of the objective function as the optimization progresses.

The best result at the end of the optimization is stored in the flowsheet. All flowsheet evaluations run during the
optimization are stored in the flowsheet results table.

35. Once the optimization has completed, click Flowsheet in the top toolbar.

4.1. Contents 47

FOQUS Documentation, Release 3.22.dev0

Fig. 18: Objective Function

Fig. 19: Optimization Samples

Fig. 20: Running Optimization

48 Chapter 4. Optimization

FOQUS Documentation, Release 3.22.dev0

36. Open the Node Editor and look at the Input Variables table. The approximate result should be 𝑎 = 2, 𝑏 = −3,
and 𝑐 = 1 (see Figure Flowsheet, Input Variables Results).

Fig. 21: Flowsheet, Input Variables Results

4.1. Contents 49

FOQUS Documentation, Release 3.22.dev0

50 Chapter 4. Optimization

CHAPTER

FIVE

UNCERTAINTY QUANTIFICATION (UQ)

5.1 Contents

5.1.1 Reference

The Uncertainty Quantification (UQ) module of FOQUS provides a multitude of analysis and visualization capabilities
to facilitate the understanding of uncertainty’s impact on a given system. In a generic UQ study, the workflow is usually
comprised of the following steps:

1. Define the objectives of the analysis.

2. Specify and acquire the simulation model, which implements an input-to-output mapping from inputs to outputs.

3. Select the inputs that have uncertainty and characterize said uncertainty in the form of prior distributions.

4. Identify relevant data from physical experiments that can be used to refine these prior distributions on the inputs.

5. Generate a set of input samples according to the input distribution.

6. Propagate the set of input samples through the simulation model to get the corresponding output values.

7. Analyze the results to make informed decisions about subsequent analyses.

FOQUS UQ provides tools to perform Steps 5-7. With respect to Step 7, a variety of analysis capabilities are available.
They include parameter screening methods, response surface construction/validation/prediction, uncertainty analysis,
sensitivity analysis, and visualization.

In this chapter, components of the UQ user interface are first explained, then the use of these components for UQ
analyses is illustrated.

UQ User Interface

The UQ module enables the user to perform UQ studies on a flowsheet. From the Uncertainty button on the Home
window, the user can configure different simulation ensembles (different sets of samples generated using different
sampling schemes), run them, and perform analyses. This screen is illustrated in Figure Uncertainty Quantification
Screen.

1. Simulation Ensemble Table displays all of the simulation ensembles: each ensemble being a row in the table.
A simulation ensemble is a collection of sample points where each sample point has a different set of values for
the uncertain variables. The values of these variables are generated based on the sampling scheme designated
by the user. When launched, the output values of the sample points are calculated based on the generated sample
input values. Subsequently, the corresponding simulation outputs can be analyzed. For each ensemble, the table
displays the Ensemble index, Run Status (how many have been completed), Setup and Launch options (dis-
cussed below), and a Descriptor. The Descriptor contains the name of the corresponding node in the flowsheet

51

FOQUS Documentation, Release 3.22.dev0

Fig. 1: Uncertainty Quantification Screen

52 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

or the name of the file if the ensemble was loaded from a file. Additional sample information such as # Inputs,
Outputs, Sample Design, and Sample Size are also displayed on the right.

2. Add New creates a simulation ensemble (a set of input samples) as a new row in the Simulation Ensemble
Table. Once clicked, a dialog is displayed to prompt the user to choose between using (1) a flowsheet (an exact
simulation model) or (2) a response surface (an approximate simulation model or an emulator) associated with
the ensemble.
If using an emulator, the user must browse a PSUADE-formatted file that contains the training data for the
emulator (in this version, the response surface type has been designated inside the sample file and can only be
changed by editing the sample file) and select the output(s) to be evaluated by the trained emulator.
Subsequently, a simulation setup dialog box is displayed for setting up the distributions of input variables and
the sampling scheme to generate samples of the uncertain input variables. This Simulation Ensemble Setup
dialog is explained in further detail in Section Simulation Ensemble Setup Dialog.

3. Load from File loads a simulation ensemble from a sample file that conforms to the PSUADE full file format.
(See Section File Formats for details on the PSUADE full file format.) The user can click Save Selected to save
an existing ensemble as a PSUADE full file, and load it by clicking Load from File to perform further analyses.

4. Clone Selected clones the selected simulation ensemble and adds the copy as a new row at the end of the table.
This ensemble can then be edited (e.g., depending on whether the ensemble has been run, the user has different
options for modifying the ensemble). This allows the user to create a new ensemble similar to the current ensem-
ble without having to start from scratch (i.e., setting up the input parameters). For example: (1) Clone Selected
can be used in conjunction with Load from File to clone an existing ensemble before input/output modification
to prepare a new but similar ensemble for UQ analysis. (2) Clone Selected can also be used to prepare a fresh
ensemble for evaluation via a different simulation model. In this case, the user should save the cloned ensemble,
reload it by clicking Add New, associate it with a node, and then click Launch to start the runs.

5. Delete Selected deletes the currently selected simulation ensemble.

6. Revise enables a user to change a simulation ensemble before launching the run. If the ensemble was previously
run or it is cloned from an already-generated sample, the corresponding button becomes View so the user can
view the input samples in the simulation ensemble.

7. Launch starts the simulation process of the ensemble. (Launch is not enabled until the user has setup everything
needed for simulations.) A simulation is launched for each sample point to compute the corresponding outputs.

8. Analyze, when enabled (after all simulation results are ready), enables the user to perform various UQ analysis
to the ensemble. When clicked, a new dialog box displays, allowing the user to configure and run analysis.

9. Data Manipulation enables (1) the deletion of inputs, outputs, or samples, (2) the modification of output values
for specific sample points, and (3) the range-based filtering of samples.

10. Inspection/Deletion/Output Value Modification serves three purposes: it enables the user to (1) view the
numerical values of samples in table form, (2) delete variables and/or samples, and (3) edit the output values of
specific samples. Deletion creates a new simulation ensemble as a new row in the simulation table that contains
only those inputs/outputs and samples that were not selected for deletion. Output Value Modification changes
the values within the ensemble itself.

11. Filtering enables the user to filter samples based on the values of an input or output. First, select the ensemble
to be filtered from the Simulation Ensemble Table. Once filtering is complete, a new simulation ensemble
is added as a new row in the simulation table. The new simulation ensemble contains only those samples that
satisfy the filtering criterion (with input or output samples within the specified range).

12. Reset Table resets the table to default, meaning all variable and sample selections are unselected and output
values within the table are reverted back to their original values, thus undoing any edits to the table.

13. The table displays the values of inputs and outputs for each sample. Inputs are highlighted in pink; outputs are
highlighted in yellow. The user can select which variables (columns) to delete by selecting the checkboxes on top.
Likewise, the user can select which samples (rows) to delete by selecting the checkboxes on the left. Multiple
samples can also be selected/deselected by using (1) Shift+Click or Ctrl+Click to select multiple rows, or (2)

5.1. Contents 53

FOQUS Documentation, Release 3.22.dev0

right-clicking to bring up a menu to check or uncheck the checkboxes corresponding to the rows of the selected
samples. In addition, the user can change any output value by editing the appropriate cell. These modified cells
are highlighted green until changes are made permanent by clicking the appropriate button.

14. Perform Deletion then Save as New Ensemble creates a new simulation ensemble as a new row in the Simu-
lation Ensemble Table. The new ensemble is without the variables and samples that were previously selected
for removal.

15. Make Output Value Changes Permanent overwrites the output values in the current ensemble with those that
are highlighted green in the table.

enumerate

The Filtering tab is illustrated in Figure Filtering Tab and enables the user to filter samples based on the values
of an input or output.

Fig. 2: Filtering Tab

enumerate

enumerate

16. Click on Add/Edit Filters, in the Flowsheet Results window within the “Filtering Tab”

17. 1. Within the Filter Dialog Box, Click on “New Filter” to add a filter

2. Enter a filter expression in python format. Variables can be dragged into the expression, from the
“Columns”, click Done.

18. Select a “Current Filter” after which the the filtered ensemble can be saved by clicking on “ Save as New Ensem-
ble”

The single-output Analysis of Ensemble dialog, which is displayed when Analyze is clicked for the selected
ensemble, has two modes, as shown in Figure Analysis Dialog, Ensemble Data Analysis, Wizard Mode and
Figure Response Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis.

enumerate

19. Select Wizard or Expert mode. The Wizard mode provides more detailed guidance on how to perform UQ
analysis. For users familiar with UQ analysis techniques, the Expert mode provides more functionality and

54 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 3: Filtering Dialog Box

flexibility but with less guidance on its use. For example, users will be able to customize the input distributions,
as well as run more advanced uncertainty analysis that handles both epistemic and aleatory uncertainties.

20. The Analyses Performed section provides the user a history of previous analyses that were performed. The
results of these analyses are cached, so the user can plot the analysis results without having to recompute them.

21. The Analysis Table populates as the user performs analyses. It lists previous analyses that the user has performed,
along with some of the main analysis settings (analysis type, inputs and outputs analyzed, etc.)

22. Depending on the type of analysis performed, the Additional Info button displays any additional settings or
parameters set by the user in the selected analysis that were not shown in the Analysis Table.

23. The Results button will display the results of the selected analysis.

24. The Delete button will delete the selected analysis from the history of previous analyses. Once deleted, the user
will need to perform the analysis again to see its results.

25. The Qualitative Parameter Selection (top part of the Analysis of Ensemble dialog) houses the controls for
parameter selection analysis. Parameter selection is a qualitative sensitivity analysis method that identifies a
group of dominant input parameters that are recommended for inclusion in subsequent UQ analyses, as they are
the ones that most impact the output uncertainty. The parameter screening results are shown as bar graphs so
that the user can rank the uncertain parameters visually.

26. Before performing parameter selection, the user must select a single output for identifying parameter sensitivities
from the Choose output to analyze drop-down list.

27. There are several methods of parameter selection. The list of parameter selection methods available depends
on the sample scheme of the selected ensemble. Select the appropriate method from the Choose Parameter
Selection Method drop-down list. Then click Compute input importance to start the analysis.

28. The Ensemble Data radio button directs FOQUS to perform analyses on the raw ensemble data.

5.1. Contents 55

FOQUS Documentation, Release 3.22.dev0

Fig. 4: Analysis Dialog, Ensemble Data Analysis, Wizard Mode

56 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

29. To view plots of the raw ensemble data, choose the desired input(s) from the Select the input(s) drop-down lists.
Then click Visualize. If multiple inputs are selected, each must be unique.

30. To perform an analysis, select the desired analysis (“Uncertainty Analysis” or “Sensitivity Analysis”) from the
Choose UQ Analysis drop-down list. Uncertainty Analysis computes and displays the probability distribution
of the single selected output parameter and displays its sufficient statistics, such as mean, standard deviation,
skewness, and kurtosis. Sensitivity Analysis computes and displays each uncertain input parameter’s contribution
to the total variance of the output. If Sensitivity Analysis is selected, choose the type of sensitivity analysis desired
in the next drop-down list. There are three options for Sensitivity Analysis: (1) first-order, (2) second-order, and
(3) total-order.

• First-order analysis examines the effect of varying an input parameter alone.

• Second-order analysis examines the effect of varying pairs of input parameters.

• Total-order analysis examines all interactions’ effect of varying an input parameter alone and as a combi-
nation with any other input parameters.

Click Analyze to run the analysis. (Note: Raw ensemble data analysis may not be suitable if the sample size is
small. It may be useful if the data set has tens of thousands of sample points or if an adequate response surface
cannot be constructed. Otherwise, response surface-based analyses are recommended.)

Fig. 5: Analysis Dialog, Response Surface Analysis, Wizard Mode

31. Response Surface enables the user to perform all analyses related to response surfaces. A response surface is
an approximation of the input-to-output relationship. This is an inexpensive way to approximate the values of

5.1. Contents 57

FOQUS Documentation, Release 3.22.dev0

outputs given different input values when the actual simulation of output values is computationally intensive.
FOQUS uses the data (i.e., input-output samples) to fit a response surface scheme. The first step in this analysis
is to select which output to analyze.

32. Select the Response Surface Model to be used to approximate the input-to-output mapping. Selection of “Poly-
nomial” or “MARS” requires one further selection in the second drop-down list. If “Polynomial” is chosen in the
first drop-down list and “Legendre” is chosen in the second drop-down list, the user needs to specify a number
for the Legendre polynomial order before analysis can proceed.

33. The response surface selected must be validated before further analyses can be performed. The user can specify
the error envelope for the validation plot. When Validate is clicked, the resulting plots display the best fit between
the response surface (based on the model selected) and the actual data.

34. Choose UQ Analysis enables the user to perform response-surface-based UQ analyses. Select the analysis in the
first drop-down list. If the desired analysis is Sensitivity Analysis, select the desired type of sensitivity analysis
in the second drop-down list and then click Analyze. Uncertainty Analysis and Sensitivity Analysis compute
and display the same quantities as in item 30. However, the results displayed are based on samples drawn from
the trained response surface, not the simulation ensemble itself. Moreover, if the selected response surface has
uncertainty, the resulting plots also reflect this uncertainty information.

35. FOQUS also provides visualization capabilities, enabling the user to view the response surface as a function of
one or multiple inputs. Up to three inputs can be visualized at once. Click Visualize to view. A 2-D line plot
displays if only one input parameter is selected. A 3-D surface plot and a 2-D contour plot display if two input
parameters are selected. A 3-D isosurface plot with a slider bar displays if three input parameters are chosen. For
the isosurface plot, the user can use the slider to selectively display the 3-D input parameter space that activates
a particular range in the output parameter.

Finally, the Bayesian Inference of Ensemble dialog (shown in Figure Bayesian Inference Dialog) is used to
calculate the posterior distributions (prior distributions integrated with data) of the uncertain input parameters.
Inference utilizes Markov Chain Monte Carlo (MCMC) to compute the posterior distributions, using response
surfaces that serve as fast approximations to the actual simulation model.

enumerate

36. Inference uses a response surface to approximate the input-to-output mapping. In Output Settings, select the
observed outputs and select the response surface type that works best with each observed output. As in item 32,
further selections may be required based on the response surface chosen. The simulation ensemble is used as the
training data for generating the response surfaces.

37. The user can specify which inputs are fixed, design (fixed per experiment, but changes between experiments),
or variable using the Input Settings Table. In addition, the user can specify which inputs are displayed in the
resulting plots of the posterior distributions. By default, once inference completes, all inputs will be displayed in
the plots. To omit specific inputs, clear the checkboxes from the Display column of the table. Finally, in Expert
mode, this table can also be used to modify the input prior distributions. The default prior is the input distribution
specified in the simulation ensemble. To change the prior distribution type, use the drop-down list in the PDF
column and enter corresponding values for the PDF parameters. To change the range of a uniform prior, scroll
all the way to the right to modify Min/Max.

38. The Observations section enables the user to add experimental data in the form of observations of certain output
variables. At least one observation is required. Currently, the observation noise model is assumed to be a normal
distribution. Other distributions may be supported in the future. To specify the observation noise model, enter
the mean (and standard deviation, if standard inference is selected) for each output observation. For convenience,
the Mean and Standard Deviation fields have been populated with the statistics from the ensemble uncertainty
analysis. If any inputs are selected as design inputs, their values will also be required here.

39. Save Posterior Input Samples to File checkbox, when selected, saves the posterior input samples as a PSUADE
sample file (format described in Section File Formats). This file characterizes the input uncertainty as a set of
samples, which can be re-used in the Simulation Ensemble Setup dialog, to evaluate the outputs corresponding
to these posterior input samples.

58 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 6: Bayesian Inference Dialog

5.1. Contents 59

FOQUS Documentation, Release 3.22.dev0

40. If saving posterior samples to a file, click Browse to set the name and location of where this file is saved.

41. Click Infer to start the analysis. (Note: If the inference returns an invalid posterior distribution (i.e., one with no
samples), it usually means the prior distributions or that the observation data distributions are not prescribed ap-
propriately. In this case, it is recommended that the user experiment with different priors and/or data distribution
means and/or standard deviations.)

42. Inference calculations often take a very long time. If inference has run to completion, use Replot to generate new
plots (e.g., to only display a subset of the input posterior graphs) from the cached inference results.

Simulation Ensemble Setup Dialog

The Simulation Ensemble Setup dialog (shown in Figure Simulation Ensemble Setup Dialog, Distributions Tab) is
used to create a new simulation ensemble. This is done by: (1) setting up distribution parameters and generating
samples, or (2) loading samples from a file. This dialog is displayed when selecting Add New on the UQ window
(Figure Uncertainty Quantification Screen).

Fig. 7: Simulation Ensemble Setup Dialog, Distributions Tab

1. Choose how to generate samples. There are three options: (1) Choose sampling scheme (default), (2) Load
flowsheet samples, or (3) Load all samples from a single file. The option 3 is explained in item 11.

2. If Choose Sampling Scheme is selected, the Distributions tab is displayed. The user specifies the input uncer-
tainty information.

60 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

3. The Distributions Table is pre-populated with input variable information gathered from the flowsheet node.
Under the Type column drop-down list, the user can select “Fixed” or “Variable”. Selecting “Fixed” means that
the input is fixed at its default value for all the samples. Changing the type to “Variable” means that the input
is uncertain; therefore, its value varies between samples. With any fixed input, the only parameter that can be
changed is the Default value (i.e., all samples of this input are fixed at this default value). With any variable input,
the Min/Max values, as well as the probability distribution function (PDF), for that input can be changed. Some
PDFs have their own parameters (e.g., mean and standard deviation for a normal distribution), which are required
in the columns right of the distribution column. See the PSUADE manual for more details on the different PDFs.

4. All Fixed and All Variable are convenient ways to set all the inputs to variable or fixed.

5. Note: A “Sample” PDF refers to sampling with replacement (i.e., input samples would be randomly drawn,
with replacement, from a sample file). If the selected distribution for any input is “Sample”, then the following
parameters are required: (1) the path of the sample file (which must conform to the sample format specified in
Section File Formats); (2) the output index that designates which output is to be used.

6. In the Sampling scheme tab (Figure Simulation Ensemble Setup Dialog, Sampling Scheme Tab), specify the
sampling scheme, the sample size, and perform sample generation.

Fig. 8: Simulation Ensemble Setup Dialog, Sampling Scheme Tab

7. Each radio button displays a different list of sampling schemes on the right. The radio buttons serve as a guide
to help in the selection of the appropriate sampling schemes for target analyses. A sampling scheme must be
selected from the list on the right to proceed.

8. Set the number of samples to be generated from the # of samples spinbox.

5.1. Contents 61

FOQUS Documentation, Release 3.22.dev0

9. When all parameters are set, click Generate Samples. This generates the values for all the input variables, based
on the sampling scheme selected.

10. Once samples have been generated, click Preview Samples to view the samples that were generated. This dis-
plays the sample values in table form, as well as graphically as a scatter plot.

11. From item 1, if the user elects to load all samples from a single file, click Browse to select the file containing
the samples (Figure Simulation Ensemble Setup Dialog, Load Samples Option. This file must conform to the
PSUADE full file format, the PSUADE sample format, or CSV file (all formats described in Section File For-
mats). Note: This is the only place where all the formats are supported. Once the file is loaded, the file name
displays in the text box. These samples can now be used in the same way as an ensemble that was newly generated
(as described above).

Fig. 9: Simulation Ensemble Setup Dialog, Load Samples Option

62 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

5.1.2 Tutorials

This section contains five tutorials that illustrate the use of FOQUS UQ to facilitate the UQ workflow discussed above.

Each tutorial will refer to example files located in the examples directory of the FOQUS download.

Tutorial 1: Simulation Ensemble Creation and Execution

Creating a simulation ensemble using the variables’ distributions

In this tutorial, a simulation ensemble is created (using FOQUS) and run.

The FOQUS file for this tutorial is Rosenbrock_no_vectors.foqus, and this file is located in: examples/
tutorial_files/UQ/Tutorial_1

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. From the FOQUS main screen, click the Session button and then select Open Session to open a session. Browse
to the folder shown above, and select the “Rosenbrock_no_vectors.foqus” file (Figure Home Screen).

Fig. 10: Home Screen

5.1. Contents 63

FOQUS Documentation, Release 3.22.dev0

2. Opening this file loads a session that has a flowsheet with one node (Figure Flowsheet for Rosenbrock Example).
See Section Tutorial 1: Creating a Flowsheet for a detailed example of creating a flowsheet.

Fig. 11: Flowsheet for Rosenbrock Example

3. Click the Uncertainty button (Figure Uncertainty Quantification Screen).

4. Click Add New to create a new simulation ensemble.

5. The Add New Ensemble dialog displays (Figure Add New Ensemble Dialog, Flowsheet Option). The “Use
flowsheet” option should be enabled.

6. This item describes additional features and is provided for information only. It is not intended to be followed as
part of the step-by-step tutorial.
An alternative is to use an emulator by selecting “Use emulator.” This alternative is preferred if the actual
simulation model is too computationally expensive to be practical for a large number of samples. This option
enables the user to trade off accuracy for speed by training a response surface to approximate the actual
simulation model. If this option is selected (Figure Add New Ensemble Dialog, Emulator Option), the user
needs to provide a training data file containing a small simulation ensemble generated from the actual
simulation model. This training data file should be in the PSUADE full file format (see section File Formats).

• Click Browse and select the training data file with which to train the response surface. The inputs, outputs
and response surface type is read from the training data and populated accordingly on this dialog box.

• Select Output(s) of Interest. To select multiple outputs, the user can use Shift + Click to select a range, or
use Ctrl + Click to select/deselect individual outputs.

64 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 12: Uncertainty Quantification Screen

5.1. Contents 65

FOQUS Documentation, Release 3.22.dev0

7. Click OK.

Fig. 13: Add New Ensemble Dialog, Flowsheet Option

enumerate

8. This displays the Simulation Ensemble Setup dialog box (Figure Simulation Ensemble Setup Dialog,
Distributions Tab) that prompts the user for options specific to the creation of input samples.

9. Within the Distributions tab, the Distributions Table has all the inputs from the flowsheet node, each displayed
in its own row.

1. Click the All Variable button.

2. Change the Type of “x2” to “fixed.”

3. Enter 5 into the Default column for “x2.”

Subsequently, other cells in the row are enabled or disabled according to the type selection.

enumerate

In this dialog, extra options that are available related to simulation ensemble setup are discussed.

• Change the PDF of “x6” by exploring the drop-down list in the PDF column of the Distributions Table.
The drop-down list is denoted by box (9c) in Figure Simulation Ensemble Setup Dialog, Distributions
Tab, PDF Selection. If any of the parametric distributions are selected (e.g., “Normal”, “Lognormal”,

66 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 14: Add New Ensemble Dialog, Emulator Option

“Weibull”), the user is prompted to enter the appropriate parameters for the selected distribution. If non-
parametric distribution “Sample” is selected, the user needs to specify the name of the sample file (a CSV
or PSUADE sample format is located in Section File Formats) that contains samples for the variable “x6.”
The user also needs to specify the output index to indicate which output in the sample file to use. The
resulting simulation ensemble would contain “x6” samples that are randomly drawn (with replacement)
from the samples in this file.

• Alternatively, select Choose sampling scheme (box (8) of Figure Simulation Ensemble Setup Dialog, Dis-
tributions Tab), and try selecting “Load all samples from a single file.” With this selection, a new dialog
box prompts the user to browse to a PSUADE full file, a PSUADE sample file, or CSV file (all formats are
described in Section File Formats) that contains all the samples for all the input variables in the model.

Both of these options offer the user additional flexibility with respect to characterizing input uncertainty or
generating the input samples directly.

enumerate

10. Once complete, switch to the Sampling Scheme tab (Figure Simulation Ensemble Setup Dialog, Sampling
Scheme Tab).

11. Select a sampling scheme with the assumption that the user is unsure which sampling scheme to use, but wants
to perform some kind of response surface analysis. This example helps the user find a suitable one.

1. Click For response surface analysis. Note the list on the right changes accordingly.

2. Select “Latin Hypercube” from the list on the right.

12. To generate 500 samples, change the value in “# of samples.” Some sampling schemes may impose a constraint
on the number of samples. If the user has entered an incompatible sample size, a pop-up window displays with

5.1. Contents 67

FOQUS Documentation, Release 3.22.dev0

Fig. 15: Simulation Ensemble Setup Dialog, Distributions Tab

68 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 16: Simulation Ensemble Setup Dialog, Distributions Tab, PDF Selection

5.1. Contents 69

FOQUS Documentation, Release 3.22.dev0

Fig. 17: Simulation Ensemble Setup Dialog, Sampling Scheme Tab

70 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

guidance on the recommended samples size.

13. Click Generate Samples to generate the sample values for all the variable input parameters. On Windows, if the
user did not install PSUADE in its default location (C:Program Files (x86)psuade_project 1.7.1binpsuade.exe)
and the user did not update the PSUADE path in FOQUS settings (refer to Section Settings), then the user is

prompted to locate the PSUADE executable in a file dialog.

14. Once the samples are generated, the user can examine them by clicking Preview Samples. This displays a table
of the values, as well as the option to view scatter plots of the input values. The user can also select multiple

inputs at once to view them as separate scatter plots on the same figure.

15. When finished, click Done.

16. The simulation ensemble should be displayed in the Simulation Ensemble Table. If the user would like to
change any of the parameters and regenerate a new set of samples, simply click the Revise button.

17. Next, calculate the output value for each sample. Click Launch. The user should see the progress bar quickly
advance, displaying the status of completed runs (Figure Simulation Ensemble Added).

Fig. 18: Simulation Ensemble Added

18. Next, look at the output.

1. Click Analyze for “Ensemble 1” (Figure Simulation Ensemble Evaluation Complete).

2. Step 1 of “Analysis” (bottom page), the user selects Ensemble Data (Figure Simulation Ensemble Analysis).

3. Step 2 of “Analysis” is to select “Rosenbrock.f” (Figure Simulation Ensemble Analysis).

4. Step 3 of “Analysis” is to keep the analysis method as “Uncertainty Analysis” and then click Analyze. The
user should see two graphs displaying the probability and cumulative distributions plots (Figure Uncertainty
Analysis Results). Users should keep in mind these figures are intended to show what type of plots they
would get, but they should not expect to reproduce the exact same plots.

Prior to this, the “Rosenbrock” example was selected to illustrate the process of creating and running a simulation
ensemble because simulations complete quickly using this simple model. But from this point on, the adsorber subsystem

5.1. Contents 71

FOQUS Documentation, Release 3.22.dev0

Fig. 19: Simulation Ensemble Evaluation Complete

Fig. 20: Simulation Ensemble Analysis

72 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 21: Uncertainty Analysis Results

5.1. Contents 73

FOQUS Documentation, Release 3.22.dev0

of the A650.1 design is used as a motivating example to better illustrate how one would apply UQ within the context
of CCSI.

A quick recap on our motivating example: The A650.1 design consists of two coupled reactors: (1) the two-stage
bubbling fluidized bed adsorber and (2) moving bed regenerator, in which the output (outlet of sorbent stream) from
one reactor is the input (inlet) for the other. The performance of the entire carbon capture system is obtained by solving
these two reactors simultaneously, accounting for the interactions between the reactors. However, it is also necessary
to study the individual effects of the adsorber and the regenerator without the side effects of their coupling since the
two reactors display distinct characteristics under different operating conditions. Thus, the Process Design/Synthesis
Team has given us a version of the A650.1 model that can be run in two modes: (1) coupled and (2) decoupled. In this
section, analysis results are presented from running the A650.1 model using the decoupled mode and examining the
adsorber in isolation from the regenerator.

Automatically running FOQUS for a set of user-defined input conditions

In this tutorial, we will show you how to automatically run a set of user-defined input conditions in FOQUS.

This procedure will require the user to specify the input conditions in a CSV (comma-separated values) Excel file.

We will use a simple example to show the procedure.

1. Open FOQUS.

2. Go to the “Session” tab, and under “Session Name” type: basic_example (please see Figure Specifying the
Session Name).

Fig. 22: Specifying the Session Name

3. Go to the “Flowsheet” tab, and click the “Add Node” button (“A” in Figure Inserting a Node and Specifying the
Inputs).

4. Insert a node called “example” (without the quotes) (“B” in Figure Inserting a Node and Specifying the Inputs).

74 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 23: Inserting a Node and Specifying the Inputs

5. Open the Node Editor by clicking the Toggle Node Editor button (“C” in Figure Inserting a Node and Specifying
the Inputs).

6. Under the Node Editor, click “Input Variables” and the green “+” button (“D” in Figure Inserting a Node and
Specifying the Inputs).

7. Insert input variables x1 and x2 (“E” in Figure Inserting a Node and Specifying the Inputs).

8. For x1, specify the value, default, minimum, and maximum as 3, 3, -10, and 10, respectively (“E” in Figure
Inserting a Node and Specifying the Inputs).

9. For x2, specify the value, default, minimum, and maximum as 4, 4, -10, and 10, respectively (“E” in Figure
Inserting a Node and Specifying the Inputs).

10. Under the Node Editor, click “Output Variables” and the green “+” button (“A” and “B” in Figure Specifying the
Outputs).

11. Insert output variables y1 and y2 (“C” in Figure Specifying the Outputs).

12. Under the Node Editor, click “Node Script” (“A” in Figure Inserting the Equations).

13. In the first line under “Node Script (Python Code)”, type: f[‘y1’] = 2 * x[‘x1’] + 3 * x[‘x2’] (“B” in Figure
Inserting the Equations).

14. In the second line under “Node Script (Python Code)”, type: f[‘y2’] = 3 * x[‘x1’] + 5 * x[‘x2’] (“B” in Figure
Inserting the Equations).

15. Open Microsoft Excel.

16. Type example.x1 and example.x2 as the headings in Cells A1 and B1 (please see Figure Specifying the Inputs in
Excel).

5.1. Contents 75

FOQUS Documentation, Release 3.22.dev0

Fig. 24: Specifying the Outputs

Fig. 25: Inserting the Equations

76 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 26: Specifying the Inputs in Excel

17. Type 1, 3, 5, 7, 9 under example.x1 (please see Figure Specifying the Inputs in Excel).

18. Type 0, 2, 4, 6, 8 under example.x2 (please see Figure Specifying the Inputs in Excel).

19. Save the Excel file, with file name “example_samples” (without the quotes), and “CSV (MS-DOS)” as the file
type .

20. Return to FOQUS, and go to the “Uncertainty” tab (“A” in Figure The Uncertainty Tab in FOQUS).

21. Click the “Add New” button (“B” in Figure The Uncertainty Tab in FOQUS).

22. Select “Use flowsheet”, and click “OK” (“C” and “D” in Figure The Uncertainty Tab in FOQUS).

23. Select “Load all samples from a single file” (“A” in Figure Uploading the CSV File Containing the Inputs).

24. Click “Browse”, and select the “example_samples” CSV file (“B” in Figure Uploading the CSV File Containing
the Inputs).

25. Click “Done” (“C” in Figure Uploading the CSV File Containing the Inputs).

26. The user-specified inputs should appear in the “Ensemble” table (please see Figure The User-Specified Inputs in
the Uncertainty Tab).

27. Run these inputs by clicking the “Launch” button (please see Figure The User-Specified Inputs in the Uncertainty
Tab).

28. After the runs are finished, the results are shown in the table at the bottom of the “Uncertainty” tab (please see
Figure The Results of the Runs in the Uncertainty Tab).

5.1. Contents 77

FOQUS Documentation, Release 3.22.dev0

Fig. 27: The Uncertainty Tab in FOQUS

Fig. 28: Uploading the CSV File Containing the Inputs

78 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 29: The User-Specified Inputs in the Uncertainty Tab

29. The user can also view the results in the Flowsheet tab by clicking the “Results and Filtering” button (“A” in
Figure The Results of the Runs in the Flowsheet Table).

30. The Flowsheet Table contains the results (“B” in Figure The Results of the Runs in the Flowsheet Table).

Tutorial 2: Data Manipulation

In this tutorial, instructions to change the data before analysis are described. Current capabilities include sample
filtering, input/output variable deletion, and output value modification.

The files for this tutorial are located in: examples/tutorial_files/UQ/Tutorial_2

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

5.1. Contents 79

FOQUS Documentation, Release 3.22.dev0

Fig. 30: The Results of the Runs in the Uncertainty Tab

Fig. 31: The Results of the Runs in the Flowsheet Table

80 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Filtering

Filtering involves selecting out samples whose values of a certain input or output fall into a certain range. When runs
are returned from the Turbine Web API there often are simulations that failed to converge in Aspen, thus the simulation
samples corresponding to these failed runs should be excluded from analysis. Follow the steps below to filter out the
samples due to failed runs:

1. Click Load from File on the UQ window (Figure Data Manipulation, Filtering Tab).

2. Select the file “gmoat5012_9levels.res” in the examplesUQ folder. This file is an actual simulation ensemble
that has already been run. To find this file, the user may need to change the file filter to “All files.”

3. Select the Filtering tab.

Fig. 32: Data Manipulation, Filtering Tab

4. Filtering the loaded simulation ensemble based on output values is performed.

1. Click on “New Filter”, and create a filter named “f1”

2. Add the Filter Expression c(“output.status”) == 0, since the user should keep only the samples in which the
output parameter status is “0.”

3. Click “Done”

4. Select ‘f1’ as the “ Current Filter” in the Flowsheet Result window within “Filtering Tab”

5. Once the Filtering is complete, click on “Save as New Ensemble” and a new row should be added to the
simulation table

5. Once filtering is complete, a new row should be added to the simulation table (Figure Data Manipulation,
Filtering Results). This ensemble contains only those samples that have a status value of “0.” Analysis can now
be performed on this new ensemble because this ensemble contains only the valid simulations (i.e., those with

output status value of 0), in which Aspen calculations have properly converged.

5.1. Contents 81

FOQUS Documentation, Release 3.22.dev0

Fig. 33: Data Manipulation, Filtering Dialog Box

Variable Deletion

If an input or output variable is to be removed from consideration for analysis, this can be done in the Inspec-
tion/Deletion/Output Value Modification tab. Delete the status output from the previous filtering as it is no longer
needed for further analysis.

1. Verify that the ensemble that resulted from filtering is selected. If not, select that ensemble.

2. Click the Inspection/Deletion/Output Modification tab.

3. Scroll to the right of the table to the outputs, which are colored yellow.

4. Select the checkbox corresponding to the “status” output (the first output).

5. Click Perform Deletion then Save as New Ensemble.

The results are illustrated in Figure Data Manipulation, Inspection/Deletion. Note: The output count has decreased by
one for the new ensemble. The user can verify that the “status” output was removed in the new ensemble by viewing
this in the Inspection/Deletion/Output Value Modification tab again. Deletion of an input can be performed similarly
by selecting its checkbox and clicking the Perform Deletion then Save as New Ensemble button.

82 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 34: Data Manipulation, Applying the filter

5.1. Contents 83

FOQUS Documentation, Release 3.22.dev0

Fig. 35: Data Manipulation, Filtering Results

84 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 36: Data Manipulation, Inspection/Deletion

5.1. Contents 85

FOQUS Documentation, Release 3.22.dev0

Output Value Modification

To change the value of an output for a sample or several samples, follow steps below:

1. Select an ensemble.

2. Click the Inspection/Deletion/Output Value Modification tab.

3. Scroll to the right to the outputs.

4. Click on a cell for one of the outputs and enter a new value. Do the same for another cell. Notice that the modified
cells turn green. This indicates the cells that have been modified.

5. Click Make Output Value Changes Permanent to permanently change the values. The modified cells will turn
yellow, indicating the permanent change. If the user wishes to reset the table and start over before making changes
permanent, click the Reset Table.

Fig. 37: Data Manipulation, Value Modification

86 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Tutorial 3: Single-Output Analysis

From the Single-Output Analysis Screen, the user can perform analyses that are specific to a particular output of interest.
Here, the “removalCO2” output parameter is discussed.

The files for this tutorial are located in: examples/tutorial_files/UQ/Tutorial_3

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

Parameter Selection

For simulation models that have a large number of input parameters, it is common practice to down-select to a smaller
subset of the most important input parameters that are most relevant to the output of interest. This is done so subsequent
detailed studies can be performed more efficiently. By using a smaller set of inputs, a smaller set of samples may be
needed.

1. From the UQ window, load the file “gmoat5012_9levels.filtered” in examplestutorial_filesUQTutorial_3. (This
file contains the same set of samples that resulted from data filtering. They are included here to make each demo
self-inclusive.)

2. Click Analysis. A new page is displayed (Figure [fig:uqt_analysis_param]).

[fig:uqt_analysis_param]

3. Under the Qualitative Parameter Selection section, select “removalCO2” as the output.

4. Select “MOAT” as the method to be used.

5. Click Compute input importance. A graph should appear with the results (Figure [fig:uqt_param_results]).

[fig:uqt_param_results]

The bars in the plot represent the importance of a particular input in determining the value of the output. For example,
the values of dH3 and dS3 are very important in determining the value of removalCO2, whereas Hce and hp have no
affect (the y-axis displays the average changes in the model output as a result of changing the inputs in their respective
ranges. For example, from Figure [fig:uqt_param_results], changing dH3 in its range results in an average change
in CO2 removal as much as about 57 percent with a margin of +/- 3 percent). Thus, it would be safe to exclude any
inputs that have negligible bar lengths from analysis. Next, down-select the ten most important inputs based on these
results. See Section [subsubsec:uqt_vardel] for details. Change the number of samples and scheme as desired and then
generate new samples. Click Launch to run these samples to obtain another simulation ensemble that can be analyzed.

Ensemble Data Analysis

If the user is interested in the output uncertainty of “removalCO2” based on the uncertainties from the ten most im-
portant input parameters, perform uncertainty analysis, which would compute the probability distribution and sample
statistics of “removalCO2.”

1. Load “lptau20k_10inputs_4outputs.filtered” from the examplestutorial_filesUQTutorial_3 folder. Assume this
is the file that the user would receive after running the cloned simulation ensemble in which the user has down-
selected the ten most important inputs, set the Sampling Scheme to “Quasi-Monte Carlo (LPTAU)”, set the
sample size to 20K, and performed data filtering to retain only the samples with the status output equal to “0.”

2. Click Analyze. A new page displays (Figure[fig:uqt_analysis_ua]).

3. Select “Ensemble Data” to indicate that analysis is to be directly performed on the raw sample data.

5.1. Contents 87

FOQUS Documentation, Release 3.22.dev0

Fig. 38: Analysis Dialog, Parameter Selection

88 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 39: Parameter Selection Results

5.1. Contents 89

FOQUS Documentation, Release 3.22.dev0

4. Select “removalCO2” as the output variable to analyze.

5. Select “Uncertainty Analysis” and then click Analyze.

Fig. 40: Analysis Dialog, Ensemble Data Uncertainty Analysis

[fig:uqt_analysis_ua]

Once uncertainty analysis is complete, results display (Figure [fig:uqt_ua_results]) illustrating the probability
distribution function (PDF), cumulative distribution function (CDF), and the sufficient statistics (e.g., mean,
standard deviation) of “removalCO2” (top left corner of the PDF plot). This is used to evaluate if the output
uncertainty is acceptable. If the output uncertainty is too great or the user prefers the system to operate within
a higher percentage of capture, pursue further analyses to understand the relationships between the inputs and
outputs, and investigate what can be done to reduce the output uncertainties by reducing the input uncertainties.

[fig:uqt_ua_results]

Next, the user may apply variance-based sensitivity analysis to quantify each input’s contribution to the output
variance:

enumerate

6. From the bottom of the “Analysis” section, select “Sensitivity Analysis.”

7. There are three options for sensitivity analysis: (1) first-order, (2) second-order, and (3) total-order. First-order
analysis examines the effect of varying an input parameter alone. Second-order analysis examines the effect
of varying pairs of input parameters. Total-order analysis examines all interactions’ effect of varying an input

90 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 41: Ensemble Data Uncertainty Analysis Results

5.1. Contents 91

FOQUS Documentation, Release 3.22.dev0

parameter alone and as a combination with any other input parameters. For this demonstration, select “Total-
order” and click Analyze. The total sensitivity indices display in a graph. Note: If the simulation ensemble has
more than ten inputs, “Total-order” is disabled (since any reasonable sample size is not sufficient). Additionally,
since quantitative sensitivity analysis in general requires large ensembles with many samples (thousands or more),
ensemble sensitivity analysis (without the use of response surfaces) is often less practical and accurate than
response surface based analyses. The result is illustrated in Figure[fig:uqt_sa_results].

[fig:uqt_sa_results]

These results confirm that “removalCO2” is more sensitive to “dH3” and “dS3” than other inputs. (The y-axis displays
an approximate percentage of output variance attributed to each individual parameter. Since total sensitivity includes
higher order interaction terms with other parameters, the sum of these total sensitivity indices usually exceeds 1.)

Ensemble Data Visualization

1. In this release, ensemble data visualization is only available in “Expert” mode. At the top of the “Analyze” page,
toggle the bar to expert mode and select “removalCO2” as the output. Next, to “Visualize Data,” choose an
input (e.g., “UQ_dH1”) and click Visualize for a 2-D scatter plot of “removalCO2” versus that input (Figure
[fig:uqt_splot1_results]).

[fig:uqt_splot1_results]

2. Next, select a second input (e.g., “UQ_dH2”) and click Visualize for a 3-D scatter plot of “removalCO2” versus
the two inputs. (Note: The input selections must be unique for the Visualize button to be enabled.) Figure
[fig:uqt_splot2_results] shows the results.

[fig:uqt_splot2_results]

The plot in Figure [fig:uqt_splot2_results] can be rotated by clicking and dragging.

Tutorial 4: Response Surface Based Analysis

For simulation models that are expensive to run, response surface analysis can be a resourceful option. To construct
a response surface, a space-filling sampling design is desired. For example, quasi-Monte Carlo (LPTAU) or Latin
hypercube sampling schemes are recommended. Additionally, there are several possibilities for curve fitting methods.
If the sample size is relatively small, polynomial regression or Gaussian process (if installed as part of PSUADE) is
preferred. Alternatively, if the sample size is large enough (one hundred or more), cubic splines (if installed) may also
be feasible.

The file for this tutorial is lptau100_10inputs_4outputs.dat, and this file is located in: examples/tutorial_files/
UQ/Tutorial_4

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

92 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 42: Ensemble Data Total-order Sensitivity Analysis Results

5.1. Contents 93

FOQUS Documentation, Release 3.22.dev0

Fig. 43: Ensemble Data Visualization of One Input

94 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 44: Ensemble Data Visualization of Two Inputs

5.1. Contents 95

FOQUS Documentation, Release 3.22.dev0

Response Surface Model Validation

To proceed with response surface based analysis, the user needs to find a suitable response surface with which to
approximate the input-to-output mapping. Validation is performed to see how well a particular response surface can
predict a subset of the withheld data.

1. Load the “lptau100_10inputs_4outputs.dat” file. Note: This is an extremely small simulation ensemble, as this
is used to highlight the differences (in validation results) between a good response surface and a bad one.

2. Click Analyze for the current ensemble. A new dialog page displays (Figure[fig:uqt_rs_validate]).

3. Under “Analysis” (bottom section), under Step 1, select “Response Surface.”

Fig. 45: Analysis Dialog, Response Surface Validation of Linear Model

[fig:uqt_rs_validate]

4. Under Step 2, select “removalCO2” as the output for analysis.

5. Under Step 3, select “Polynomial” for response surface method.

6. There are multiple types of polynomial response surfaces, with increasing complexity as the user navigates down
the list. For now, select “Linear” in the next drop-down list.

7. Insert 5.00 as the error envelope for the validation plot. Click Validate. The result is illustrated in Fig-
ure[fig:uqt_rs_validate_results].

96 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 46: Linear Response Validation Results

5.1. Contents 97

FOQUS Documentation, Release 3.22.dev0

[fig:uqt_rs_validate_results]

The cross-validation results for the linear regression model are displayed as a histogram of errors to the left and a plot of
predicted values versus actual values to the right. The histogram displays the cross validation error distribution, which
provides the user information on what the errors are like overall. If this distribution is not centered on zero, there may
be a systematic bias in the response surface model. If the distribution is too wide, it is not a good fit. As for the plot of
predicted values versus actual values, the more closely the points are to the diagonal, the better the fit. Most response
surface models, with the exception of MARS, also provide uncertainty information about the response surface. The
vertical error bars on the left plot reflect the uncertainty in the linear response’s predictions.

In summary, these two figures should provide sufficient information for the user to judge how good the fit is. As is
apparent in the figures, the linear model consistently overestimates and thus is an ill-suited response surface to model
our data. In general, the user may use a few response surface methods to see which method gives the best fit.

Response Surface Based Uncertainty Analysis

These capabilities are similar to those for ensemble data analysis. The difference is that the results are now derived
from a much larger ensemble that is computed from the response surface. With the 100 samples from the ensemble
data, a response surface is trained and is used to generate 100K samples internally to compute the results for uncertainty
and sensitivity analyses. (Note: Validation must be performed before these analyses are available.)

After the response surface validation step, select “Uncertainty Analysis” to be the UQ analysis in Step 7 of “Analysis”
(Figure [fig:uqt_rs_validate]). Click Analyze and a distribution representing the output uncertainty will be displayed
(Figure [fig:uqt_rsua_results]).

[fig:uqt_rsua_results]

Compare the response surface based uncertainty results (Figure [fig:uqt_rsua_results]) to the results from ensemble
data analysis (Figure [fig:uqt_ua_results]). The two main differences are easily seen.

• Two PDFs on top plot: A response surface (in this case, linear regression) is used to predict the output values
corresponding to the input samples. From the validation step (left plot of Figure[fig:uqt_rs_validate_results]).
Note: There is error associated with the response surface’s predictions. This error is propagated in uncertainty
analysis, in the form of standard deviations around the predicted output values (i.e., the means). Accordingly,
two histograms are presented: The “mean PDF” represents the output probability distribution computed from
the response surface’s predicted output values only, without consideration for the uncertainties surrounding these
predicted values. The “ensemble PDF” represents the output probability distribution that encompasses the un-
certainties surrounding these predicted values. In most cases, the ensemble PDF should have a larger spread
because it is accounting for more uncertainties (i.e., those that stem from the approximations inherent in the
response surface).

• Multiple cumulative distribution functions (CDFs) on bottom plot: The “mean CDF” is constructed from a
cumulative sum on the mean PDF in the top plot. Since each predicted output value (i.e., the mean) has an
associated standard deviation, this information is used to construct other PDFs that correspond to output values
that are +/- 1, 2, and 3 standard deviations from the mean. These PDFs are then converted to CDFs and shown
as colored lines. These colored lines provide an uncertainty “envelope” around the mean CDF.

98 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 47: Response Surface Based Uncertainty Analysis Results

5.1. Contents 99

FOQUS Documentation, Release 3.22.dev0

Response Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis

In “Expert Mode”, the user can perform more advanced uncertainty analysis that handles both epistemic and aleatory
uncertainties. To do so, the user will need to designate the uncertainty type (epistemic or aleatory) for each uncertain
input. In general, epistemic uncertainties are reducible uncertainties that arise due to lack of knowledge, such as
simplifying assumptions in a mathematical model. Therefore, epistemic uncertainty is often characterized by upper and
lower bounds. On the other hand, aleatory uncertainties are irreducible uncertainties that represent natural, physical
variability in the phenomenon under study. As such, aleatory uncertainties are often characterized by distributions.
Hence, the user is required to provide a PDF for each aleatory input. (In FOQUS, with the exception of mixed epistemic-
aleatory uncertainty analysis, all uncertain inputs are treated as aleatory inputs.)

To perform mixed epistemic-aleatory uncertainty (Figure Response Surface Based Mixed Epistemic-Aleatory Uncer-
tainty Analysis), switch to “Expert Mode” by clicking the Mode button that toggles between the analysis modes. Af-
ter response surface validation, select “Uncertainty Analysis” in the first Choose UQ Analysis drop-down list, then
“Epistemic-Aleatory” in the secondary drop-down list, for the UQ analysis. In the input table, designate the parameter
Type (“Epistemic”, “Aleatory” or “Fixed”) and the corresponding information for each input. Once complete, click
Analyze. In this tutorial we consider dH1 & dH2 as epistemic uncertain parameters, and rest of them are aleatory.

Fig. 48: Response Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis

The results of mixed epistemic-aleatory uncertainty analysis is a plot (Figure Response Surface Based Mixed
Epistemic-Aleatory Uncertainty Analysis Results) containing multiple CDFs. In the mixed analysis, the epistemic

inputs are sampled according to their lower and upper bounds. Each sample point spawns a response surface based
uncertainty analysis, in which the epistemic inputs are fixed at their sampled value and the aleatory input uncertainties

100 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

are propagated to generate a CDF that represents the output uncertainty. A slider is provided for the user to extract the
probability range corresponding to a particular value of the output.

Fig. 49: Response Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis Results

5.1. Contents 101

FOQUS Documentation, Release 3.22.dev0

Response Surface Based Sensitivity Analysis

For quantitative sensitivity analysis, follows these steps:

1. In the Choose UQ Analysis drop-down list (Step 6 of “Analysis”), select “Sensitivity Analysis.”

2. In the next drop-down list, select “First-order” and click Analyze. (This analysis may take a long time depending
on the sample size and the response surface used.)

Prediction errors are associated with the response surface’s predictions of the output values (left plot of Figure
[fig:uqt_rs_validate_results]). Earlier, it was observed that the response surface error contributed to the output
uncertainty, leading to a larger spread in the output PDF (top plot of Figure [fig:uqt_rsua_results]). In Figure

[fig:uqt_rssa_results], the response surface error contributed to uncertainty (shown as blue error bars) surrounding
each input’s contribution to the output variance (shown as yellow bars).

[fig:uqt_rssa_results]

Response Surface Based Visualization

The response surface that has been validated can also be visualized.

1. Select one input next to “Visualize Response Surface.”

2. Click Visualize to display a 2-D line plot that displays “removalCO2” versus the selected input.

[fig:uqt_rs1_results]

3. Select another input next to the first one for a 2-D response surface visualization.

4. Click Visualize to display a figure with a 3-D surface plot and a 2-D contour plot (Figure [fig:uqt_rs2_results]).

[fig:uqt_rs2_results]

5. Select another input next to the second one for a 3-D response surface visualization.

6. Click Visualize to display a 3-D isosurface plot. Move the slider to see the points in the 3-D input space that fall
within the small range of “removalCO2” (Figure [fig:uqt_rs3_results]).

[fig:uqt_rs3_results]

Tutorial 5: Bayesian Inference

For each output variable, the user specifies an observed value (from physical experiments) with the associated
uncertainties (in the form of standard deviation), if applicable. Whether standard inference or SolventFit is selected,
the tool will launch a Markov Chain Monte Carlo (MCMC) algorithm to compute the posterior distributions of the

uncertain input parameters. These input posterior distributions represent a refined hypothesis about the input
uncertainties in light of what was previously known (in the form of input prior distributions) and what was observed

currently (in the form of noisy outputs).

The file for this tutorial is lptau5k_10inputs_4outputs.filtered, and this file is located in:
examples/tutorial_files/UQ/Tutorial_5

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Load the “lptau5k_10inputs_4outputs.filtered” file from the above-mentioned folder.

102 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 50: Response Surface Based First-order Sensitivity Results

5.1. Contents 103

FOQUS Documentation, Release 3.22.dev0

Fig. 51: 1-D Response Surface Visualization

104 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 52: 2-D Response Surface Visualization

5.1. Contents 105

FOQUS Documentation, Release 3.22.dev0

Fig. 53: 3-D Response Surface Visualization

106 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 54: Analysis Dialog, Bayesian Inference

5.1. Contents 107

FOQUS Documentation, Release 3.22.dev0

2. Click Analyze for the current ensemble and a new dialog box displays (Figure [fig:uqt_analysis_infer]).

[fig:uqt_analysis_infer]

3. Select “Response Surface” in the “Analysis” section.

4. Select “Output variable to analyze” to be “removalCO2.”

5. Select “Linear Regression” as the response surface.

6. Insert 5.00 as the error envelope for the validation plot. Click Validate. The GUI allows the user to proceed with
Bayesian inference after one input has been validated; however, the user may want to validate all outputs since
they are all used in the inference.

7. Once validation is completed, click Infer at the lower right corner, which displays a new dialog box (Fig-
ure[fig:uqt_infer]).

8. In the Output Settings table (on the left), select the second, third, and fourth outputs as the observed outputs. The
user can experiment with using different response surface models (for example, linear polynomials) to approxi-
mate the mapping from inputs to each of the outputs.

9. In the Input Settings table (on the right), designate input types (variable, design, or fixed) and if necessary, switch
to Expert Mode to revise the prior distribution on the input parameters. The prior distribution represents knowl-
edge that the user possesses about the inputs before observational data (from experiments) has been incorporated
into this knowledge. If the user does not have any updated knowledge about the simulation ensemble, it is OK
to leave the table as is.

10. In the Observations table (in the middle), select the number of experiments from which the user can get obser-
vational data. In essence, if the user has 𝑁 observations, then 𝑁 should be set as the number of experiments.
The table will then populate columns for design inputs (if any) and observed outputs. Currently, only normal
distribution is supported as the noise model for observations. Enter the mean and standard deviation for each of
these observations. For convenience, the mean and standard deviation values are prepopulated with the results
from uncertainty analysis. These values have been provided as a sanity check for the user, in case the observation
for a particular output is way out of range from these distributions.

[fig:uqt_infer]

11. To save an input sample drawn from the posterior distribution, select the Save Posterior Input Samples to File
checkbox and select a location and file name to store the sample.

12. Click Infer to start the analysis. Inference can take a long time; thus, a stop feature has been implemented. Once
inference starts, the Infer button changes to Stop. To stop inference calculations, click Stop which changes the
button back to Infer, allowing the user to restart the calculations from scratch. If inference is allowed to run its
course, its results are interpolated to produce heat maps (off-diagonal subplots in Figure[fig:uqt_infer_results])
for visualization. This interpolation step can take a few minutes and while it is running, Infer is disabled.

108 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

Fig. 55: Bayesian Inference Dialog for Standard Inference

5.1. Contents 109

FOQUS Documentation, Release 3.22.dev0

110 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

[fig:uqt_infer_results]

Once the inference and interpolation steps are complete, two windows will be displayed: a multi-plot figure of the
prior distributions and another multi-plot figure of the posterior distributions. If the user has selected the Save

Posterior Input Samples to File checkbox, then a sample file will also be written to the designated file location.

In the resulting prior and posterior plots (Figure [fig:uqt_infer_results]), the univariate input distributions are
displayed as histograms on the diagonal. The bivariate input distributions (between pairs of inputs) are displayed as

heat maps in the off-diagonal subplots. On these heat maps, the regions in red reflect the input space with higher
probability. In the posterior plots, the red regions represent inputs that are more likely to have generated the specified

observations on the outputs. By comparing the prior and the posterior figures, the user can see the ”before” and
”after” impact of inference on our knowledge of the input uncertainty.

5.1. Contents 111

FOQUS Documentation, Release 3.22.dev0

To zoom in on any one of the subplots, left-click; to zoom out, right-click. To display a subset of these subplots, clear
the checkbox for the inputs to be omitted (from the first column of the Input Prior Table) and click Replot (Figure

[fig:uqt_infer_replot_results]).

112 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

[fig:uqt_infer_replot_results]

5.1. Contents 113

FOQUS Documentation, Release 3.22.dev0

5.1.3 File Formats

Most UQ capabilities within FOQUS rely on PSUADE. As such, different UQ components require input files in
PSUADE formats. CSV (comma-separated values) files are also compatible. The specific requirements are explained

in the UQ section Tutorials and section Optimization Under Uncertainty (OUU).

PSUADE Full File Format

The following is an example of the full PSUADE file format. Comments in red do not appear in the file and are only
for instructional purposes.

full-format

This file format is accepted when:

• The user load an existing ensemble by clicking the Load From File button from the Uncertainty Quantification
Screen.

• The user creates a new ensemble by clicking the Add New button from the Uncertainty Quantification Screen
and selecting the Load all samples from a single file radio button in the user’s selection of sample generation
(Simulation Ensemble Setup Dialog, Load Samples Option).

• The user performs optimization under uncertainty from the main Optimization Under Uncertainty Screen and
selects the Load Model From File radio button for the user’s model; for this file, the user does not need to
specify the first block (i.e., the PSUADE_IO block).

This file format is written when:

• The user saves an existing ensemble by clicking the Save Selected button from the Uncertainty Quantification
Screen.

PSUADE Sample File Format

The following is an example of the sample file format. Comments in red do NOT appear in the file and are only for
instructional purposes.

sample-format

This file format is accepted when:

• The user creates a new ensemble by clicking the Add New button from the Uncertainty Quantification Screen
and selecting the Load all samples from a single file radio button in the user’s selection of sample generation
(Simulation Ensemble Setup Dialog, Load Samples Option).

• The user creates a new ensemble by clicking the Add New button from the Uncertainty Quantification Screen
and selecting the Choose sampling scheme radio button in the user’s selection of sample generation (Simulation
Ensemble Setup Dialog, Distributions Tab); in the Distributions tab, if the user designates an input variable’s
PDF to be of type “Sample”, the “Param 1” field will generate a Select File button that prompts for the sample
file representing the input’s PDF.

• Similar to above, when the user enters Expert Mode within the Analysis dialog; within Expert Mode (Response
Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis), the user can change the input distribution before
performing response surface based analysis.

• The user performs optimization under uncertainty from the main Optimization Under Uncertainty Screen; if any
of the variables are designated as random variables, the UQ Setup tab will be displayed and any prompt for
loading existing sample (e.g., “Load existing sample for Z3” or “Load existing sample for Z4”) will require this
file format. (Currently, the UQ Setup tab is missing from the Figure because no variables have been designated
as random).

114 Chapter 5. Uncertainty Quantification (UQ)

FOQUS Documentation, Release 3.22.dev0

This file format is written when:

• The user wants to save the results of inference by clicking Save Posterior Input Samples to File within Bayesian
Inference (Bayesian Inference Dialog), which is accessible from the Analysis screen of UQ (Analysis Dialog,
Ensemble Data Analysis, Wizard Mode).

Comma Separated Values (CSV) File Format

The following is an example of the CSV file format. Comments in red do not appear in the file and are only for
instructional purposes. CSV files can be easily generated using Excel and exporting in the .csv format.

csv-format

Variable names are specified in the first line, with input names and then output names. Output names can be specified,
even if there is no data available for them yet. Data is only required for inputs. In addition, the variable names line is

not required in those places where a PSUADE sample file is acceptable.

This file format is accepted when:

• The user loads an existing ensemble by clicking the Load from File button from the Uncertainty Quantification
Screen. Variable names are required.

• The user creates a new ensemble by clicking the Add New button from the Uncertainty Quantification Screen
and selecting the Load all samples from a single file radio button in the user’s selection of sample generation
(Simulation Ensemble Setup Dialog, Load Samples Option).

• The user creates a new ensemble by clicking the Add New button from the Uncertainty Quantification Screen
and selecting the Choose sampling scheme radio button in the user’s selection of sample generation (Simulation
Ensemble Setup Dialog, Distributions Tab); in the Distributions tab, if the user designates an input variable’s
PDF to be of type “Sample”, the “Param 1” field will generate a Select File button that prompts for the sample
file representing the input’s PDF.

• Similar to above, when the user enters Expert Mode within the Analysis dialog; within Expert Mode(Response
Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis), the user can change the input distribution before
performing response surface based analysis.

• The user performs optimization under uncertainty from the main Optimization Under Uncertainty Screen; if any
of the variables are designated as random variables, the UQ Setup tab will be displayed and any prompt for
loading existing sample (e.g., “Load existing sample for Z3” or “Load existing sample for Z4”) will require this
file format. (Currently, the UQ Setup tab is missing from the Figure because no variables have been designated
as random).

5.1. Contents 115

FOQUS Documentation, Release 3.22.dev0

116 Chapter 5. Uncertainty Quantification (UQ)

CHAPTER

SIX

OPTIMIZATION UNDER UNCERTAINTY (OUU)

6.1 Contents

6.1.1 Reference

The FOQUS OUU module supports several variants of optimization under uncertainty. This chapter first presents the
mathematical formulations of these variants. Subsequently, details of the OUU graphical user interface will be

discussed.

OUU Variables

Suppose a simulation model is available for an OUU study. Let this simulation model be represented by the following
function:

𝑌 = 𝐹 (𝑍1, 𝑍2, 𝑍3, 𝑍4),

which is characterized by four types of variables:

1. Design/Decision/Optimization variables
• Notation: 𝑍1 with dimension 𝑛1

• Definition: Design variables are continuous variables that may be bounded or unbounded. They are gener-
ally the set of optimization variables in a single-stage optimization or the set of outer optimization variables
in the two-stage optimization.

2. Recourse/Operating variables
• Notation: 𝑍2 with dimension 𝑛2

• Definition: Operating variables are optimization variables in the inner optimization for a given scenario (or
realization) of the uncertain variables in a two-stage optimization.

3. Discrete uncertain variables
• Notation: 𝑍3 with dimension 𝑛3

• Definition: Discrete uncertain variables are random variables that have an enumerable set of states (called
scenarios) such that each state is associated with a finite probability and the sum of probabilities for all the
scenarios is equal to 1.

4. Continuous uncertain variables
• Notation: 𝑍4 with dimension 𝑛4

• Definition: Continuous uncertain variables are associated with a joint probability distribution function from
which a sample can be drawn to compute the basic statistics.

117

FOQUS Documentation, Release 3.22.dev0

OUU Objective Functions

In the presence of uncertainties, OUU seeks to find the optimal solution in some statistical sense. In other words, an
optimization goal may to be find the design settings that minimizes some metric. Currently, OUU supports the

following three metrics:

1. statistical mean of some selected output;

2. a linear combination of statistical mean and standard deviation of some selected output; and

3. the probability of exceeding the best value is smaller than some percentage at any point in the design space (this
is analogous to conditional value at risk).

Note that these metrics are defined in the design variable space - that is, at each iteration of an OUU algorithm, the
selected metric will be computed for the decision point under consideration. Since the calculation of these statistical
metrics requires a (possibly large) sample, OUU can benefit from parallel computing capabilities of the AWS FOQUS

Cloud.

Mathematical Formulations

FOQUS supports two types of OUU methods: single-stage OUU and two-stage OUU. The main difference between
single-stage and two-stage OUU is the presence of the recourse (or operating) variables. Strictly speaking, since

recourse variables are generally hidden (they are only needed in the inner stage and their values are not used in the
outer stage of two-stage OUU), the distinction between single-stage and two-stage OUU is not readily obvious.

Nevertheless, for the sake of clarify, we will describe details of each formulation separately. The current OUU does
not support linearly or nonlinearly-constrained optimization.

Single-Stage Formulation

In this formulation, there is no recourse variable:

𝑌 = 𝐹 (𝑍1, 𝑍3, 𝑍4)

and the optimization problem becomes:

min
𝑍1

Φ𝑍3,𝑍4 [𝐹 (𝑍1, 𝑍3, 𝑍4)]

where Φ𝑍3,𝑍4
[𝐹 (𝑍1, 𝑍3, 𝑍4)] is the statistical metric (one of the three options given above).

For example, if the objective function is the statistical mean, then the formulation becomes:

min
𝑍1

E𝑍3,𝑍4
[𝐹 (𝑍1, 𝑍3, 𝑍4)] ≈ min

𝑍1

𝑛3∑︁
𝑗=1

𝜋𝑗

(︂∫︁
𝐹 (𝑍1, 𝑍3, 𝑍4)𝑃 (𝑍4)𝑑𝑍4

)︂
where, again, 𝑛3 is the number of scenarios for the discrete uncertain variables, 𝜋𝑗 is the probability of the 𝑗-th

scenario, and 𝑃 (𝑍4) is the joint probability of the continuous uncertain variables.

118 Chapter 6. Optimization Under Uncertainty (OUU)

FOQUS Documentation, Release 3.22.dev0

Two-Stage Formulation

In this formulation, all four types of variables are present. The objective function is given by:

min
𝑍3,𝑍4

Φ𝑍3,𝑍4

[︂
min
𝑍2

𝐹 (𝑍1, 𝑍2, 𝑍3, 𝑍4)

]︂
.

If the objective function is the statistical mean, the formulation becomes:

min
𝑍1

E𝑍3,𝑍4

[︂
min
𝑍2

𝐹 (𝑍1, 𝑍2, 𝑍3, 𝑍4)

]︂
≈ min

𝑍1

𝑛3∑︁
𝑗=1

𝜋𝑗

(︂∫︁ [︂
min
𝑍2

𝐹 (𝑍1, 𝑍2, 𝑍3, 𝑍4)

]︂
𝑃 (𝑍4)𝑑𝑍4

)︂
Let

𝐺(Z1,Z3,Z4) = min
𝑍2

𝐹 (𝑍1, 𝑍2, 𝑍3, 𝑍4).

Then the two-stage equation can be rewritten as:

min
𝑍1

E𝑍3,𝑍4
[𝐺(𝑍1, 𝑍3, 𝑍4)]

≈ min
𝑍1

𝑛3∑︁
𝑗=1

𝜋𝑗

(︂∫︁
𝐺(𝑍1, 𝑍3, 𝑍4)𝑃 (𝑍4)𝑑𝑍4

)︂
which is a single-stage OUU with respect to the 𝐺 function. Therefore, 𝐺 can be optimized separately before it is

used to minimize 𝑍1, thus lending to the two-stage formulation.

OUU User Interface

The OUU module enables the user to perform optimization under uncertainty studies on a flowsheet. From the OUU
tab, the user can set up the different types of optimization parameters, select from the different OUU options, and run

the optimization. This screen is shown in Figure [fig:ouu_screen].

1. Model provides two options for setting up the model: (1) select a node from the flowsheet that has already been
instantiated; or (2) load the model from a file in the PSUADE full file format (with the opt_driver variable set to
the simulation executable.)

2. Variables displays all variables defined in the model that can be used in this context. Each available variable can
be set to either one of the 6 types:

• “Fixed”: The parameter’s value is fixed throughout the optimization process.

• “Opt: Primary Continuous (Z1)”: Continuous parameter for the outer optimization.

• “Opt: Primary Discrete (Z1d)”: Discrete parameter for the outer optimization.

• “Opt: Recourse (Z2)”: Recourse parameter for the inner optimization.

• “UQ: Discrete (Z3)”: Discrete or categorical uncertain parameter that contributes to scenarios.

• “UQ: Continuous (Z4)”: Continuous uncertain parameter with a given probability distribution.

3. Optimization Setup allows users to select the objective function for OUU. It also allows users to select the inner
optimization solver. There are two options for the inner solver: (1) the simulation model provided by users is an
optimizer itself, and (2) the simulation provided by users needs to be wrapped around by another optimizer in
FOQUS.

6.1. Contents 119

FOQUS Documentation, Release 3.22.dev0

Fig. 1: Optimization Under Uncertainty Screen

4. UQ Setup allows users to set up the continuous uncertain parameters. There are two options: (1) FOQUS can
generate a sample internally, or (2) a user-generated sample can be loaded into FOQUS. The sample size should
be larger than the number of continuous uncertain parameters. Optionally, response surface can be turned on to
enable the statistical moments to be computed more accurately even with small samples. Users can also select
a smaller subset of the sample for building response surfaces and evaluate the response surfaces with the larger
samples.

5. Launch/Progress has the ‘Run OUU’ button to launch OUU runs.

6.1.2 Tutorials

This section walks through a few examples of running OUU.

The files for these tutorials are located in: examples/tutorial_files/OUU

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

120 Chapter 6. Optimization Under Uncertainty (OUU)

FOQUS Documentation, Release 3.22.dev0

Example 1: OUU with Discrete Uncertain Parameters Only

This example has only discrete uncertain parameters and the objective function is computed from the mean estimation
with the scenarios from a sample file.

Fig. 2: OUU Example with Discrete Uncertain Parameters

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, and variable 9 − 12 as 𝑍3.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Discrete Random Variables’, browse the examples/OUU/ directory and load the
ex1_x3sample.smp sample file (see Figure [fig:ouu_ex1]).

6. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

6.1. Contents 121

FOQUS Documentation, Release 3.22.dev0

Example 2: OUU with Continuous Uncertain Parameters Only

This example has only continuous uncertain parameters and the objective function is computed from the mean
estimation with a Latin hypercube sample of size 200 for 𝑍4.

Fig. 3: OUU Example with Continuous Uncertain Parameters

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, and variable 9 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Continuous Random Variables’, select ‘Generate new sample for 𝑍4’, set ‘Sample
Scheme’ to ‘Latin Hypercube’ and set sample size to 200 (see Figure [fig:ouu_ex2]).

6. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

122 Chapter 6. Optimization Under Uncertainty (OUU)

FOQUS Documentation, Release 3.22.dev0

Example 3: OUU with Continuous Uncertain Parameters and Response Surface

This example is similar to Example 2 except that response surfaces will be used on the 𝑍4 sample (that is, the 𝑍4

sample will be used to construct response surfaces and the means will be estimated from a large sample evaluated on
the response surfaces).

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, and variable 9 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Continuous Random Variables’, select ‘Generate new sample for 𝑍4’, set ‘Sample
Scheme’ to ‘Latin Hypercube’ and set sample size to 200.

6. Under ‘UQ Setup’ and ‘Continuous Random Variables’, check the ‘Use Response Surface’ box (see Figure
[fig:ouu_ex2]).

7. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

Example 4: OUU with Discrete and Continuous Uncertain Parameters

This example has both discrete and continuous parameters. The discrete scenarios will be loaded from a sample file.
A Latin hypercube sample will be generated for the continuous variables.

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, variable 9 as 𝑍3, and variable 10 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Discrete Random Variables’, browse the examples/OUU/ directory and load the
ex456_x3sample.smp sample file.

6. Under ‘UQ Setup’ and ‘Continuous Random Variables’, select ‘Generate new sample for 𝑍4’, set ‘Sample
Scheme’ to Latin hypercube and set ‘Sample Size’ to 100.

7. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

Example 5: OUU with Mixed Uncertain Parameters and Response Surface

This example is similar to Example 4 except that response surfaces will be used to estimate the means for the
continuous uncertain variables.

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, variable 9 as 𝑍3, and variable 10 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Discrete Random Variables’, browse the examples/OUU/ directory and load the
ex456_x3sample.smp sample file.

6.1. Contents 123

FOQUS Documentation, Release 3.22.dev0

6. Under ‘UQ Setup’ and ‘Continuous Random Variables’, select ‘Generate new sample for 𝑍4’, set ‘Sample
Scheme’ to Latin hypercube and set ‘Sample Size’ to 100.

7. Under ‘UQ Setup’ and ‘Continuous Random Variables’, check the ‘Use Response Surface’ box.

8. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

Example 6: OUU with User-provided Samples and Response Surface

This example is similar to Example 4 except that a sample for 𝑍4 will be used (instead of the Latin hypercube sample
generated internally).

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, variable 9 as 𝑍3, and variable 10 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Discrete Random Variables’, browse the examples/OUU/ directory and load the
ex456_x3sample.smp sample file.

6. Under ‘UQ Setup’ and ‘Continuous Random Variables’, check ‘Load existing sample for 𝑍4’ and load the 𝑍4

sample examples/OUU/ex6_x4sample.smp.

7. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

Example 7: OUU with Large User-provided Samples and Response Surface

This example is similar to Example 5 except that a sample for 𝑍4 is provided (instead of generated internally).

1. Start FOQUS and click the ‘OUU’ icon.

2. Under ‘Model’, browse and load examples/OUU/ouu_optdriver.in.

3. Under ‘Variables’, set variable 1 − 4 as 𝑍1, variable 5 − 8 as 𝑍2, and variable 9 − 12 as 𝑍4.

4. Under ‘Optimization Setup’, select the first objective function (default) and select ‘use model as optimizer’ as
the ‘Inner Solver’.

5. Under ‘UQ Setup’ and ‘Continuous Random Variables’, check ‘Load existing sample for 𝑍4’ and load the 𝑍4

sample examples/OUU/ex7_x4sample.smp (10000 sample points).

6. Under ‘UQ Setup’ and ‘Continuous Random Variables’, check ‘Use Response Surface’ and set ‘Sample Size’ to
100.

7. Go to ‘Launch/Progress’ page, click ‘Run OUU’ and see OUU in action.

124 Chapter 6. Optimization Under Uncertainty (OUU)

CHAPTER

SEVEN

SURROGATE MODELING

7.1 Contents

7.1.1 Gradient Generation to Support Gradient-Enhanced Neural Networks

Neural networks are useful in instances where multivariate process data is available and the mathematical functions
describing the variable relationships are unknown. Training deep neural networks is most efficient when samples of
the variable derivatives, or gradients, are collected simultaneously with process data. However, gradient data is often
unavailable unless the physics of the system are known and predetermined such as in fluid dynamics with outputs of

known physical properties.

These gradients may be estimated numerically using solely the process data. The gradient generation tool described
below requires a Comma-Separated Value (CSV) file containing process samples (rows), with inputs in the left

columns and outputs in the rightmost columns. Multiple outputs are supported, as long as they are the rightmost
columns, and the variable columns may have string (text) headings or data may start in row 1. The method produces a
CSV file for each output variable containing gradients with respect to each input variable (columns), for each sample
point (rows). After navigating to the FOQUS directory examples/other_files/ML_AI_Plugin, the code below sets up

and calls the gradient generation method on the example dataset MEA_carbon_capture_dataset_mimo.csv:

required imports
>>> import pandas as pd
>>> import numpy as np
>>> from generate_gradient_data import generate_gradients
>>>
>>> data = pd.read_csv(r"MEA_carbon_capture_dataset_mimo.csv") # get dataset
>>> data_array = np.array(data, ndmin=2) # convert to Numpy array
>>> n_x = 6 # we have 6 input variables, in the leftmost 6 columns

>>> gradients = generate_gradients(
>>> xy_data=data_array,
>>> n_x=n_x,
>>> show_plots=False, # flag to plot regression results during gradient training
>>> optimize_training=True, # will try many regression settings and pick the best␣
→˓result
>>> use_simple_diff=True # flag to use simple partials instead of chain rule formula;␣
→˓defaults to False if not passed
>>>)
>>> print("Gradient generation complete.")

>>> for output in range(len(gradients)): # save each gradient array to a CSV file
>>> pd.DataFrame(gradients[output]).to_csv("gradients_output" + str(output) + ".csv")

(continues on next page)

125

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

>>> print("Gradients for output ", str(output), " written to gradients_output" +␣
→˓str(output) + ".csv",)

Internally, the gradient generation methods automatically executes a series of actions on the dataset:

1. Import process data of size (m, n_x + n_y), where m is the number of sample rows, n_x is the number of input
columns and n_y is the number of output columns. Given n_x, the data is split into an input array X and an output

array Y.

2. For each input xi and each output yj, estimate the gradient using a multivariate chain rule approximation. For
example, the gradient of y1 with respect to x1 is calculated at each point as:

𝐷𝑦1

𝐷𝑥1
= 𝑑𝑦1

𝑑𝑥1

𝑑𝑥1

𝑑𝑥1
+ 𝑑𝑦1

𝑑𝑥2

𝑑𝑥2

𝑑𝑥1
+ 𝑑𝑦1

𝑑𝑥3

𝑑𝑥3

𝑑𝑥1
+ ...

where D/D represents the total derivative, d/d represents a partial derivative at each sample point. y1, x1, x2, x3, and
so on are vectors with values at each sample point m, and this formula produces the gradients of each output with

respect to each input at each sample point by iterating through the dataset. The partial derivatives are calculated by
simple finite difference. For example:

𝑑𝑦1

𝑑𝑥1
(𝑚1.5) = 𝑦1(𝑚2)−𝑦1(𝑚1)

𝑥1(𝑚2)−𝑥1(𝑚1)

where m_1.5 is the midpoint between sample points m_2 and m_1. As a result, this scheme calculates gradients at the
points between the sample points, not the actual sample points.

3. Train an MLP model on the calculated midpoint and midpoint-gradient values. After normalizing the data via
linear scaling (see Data Normalization For Neural Network Models), the algorithm leverages a small neural network
model to generate gradient data for the actual sampe points. Passing the argument optimize_training=True will train
models using the optimizers Adam or RMSProp, with activation functions ReLu or Sigmoid on hidden layers, using a
Linear or ReLu activation function on the output layer, building 2 or 8 hidden layers with 6 or 12 neurons per hidden
layer. The algorithm employs cross-validation to check the mean-squared-error (MSE) loss on each model and uses

the model with the smallest error to predict the sample gradients.

4. Predict the gradients at each sample point from the regressed model. This produces n_y arrays with each having
size (m, n_x) - the same size as the original input array X.

5. Concatenate the predicted gradients into a single array of size (m, n_x, n_y). This is the single object returned by
the gradient generation method.

7.1.2 Machine Learning & Artificial Intelligence Flowsheet Model Plugins

In addition to data-driven model generation, surrogates may be specified by importing external Python classes.
FOQUS supports conversion of custom Pymodel scripts as well as neural network model files into flowsheet node

surrogates. The FOQUS session script will automatically load model files from the corresponding working directory
folders when the application is launched.

• Plugin – Selecting this model type in the Node Editor displays available Python model classes, which typically
contain initialization and run methods to define the model expressions. To use this tool, users must develop a
Pymodel script (see the examples in FOQUS.foqus_lib.framework.pymodel) as a guide) and place the file in the
appropriate folder user_plugins in the working directory, as shown below. This model type is demonstrated in
Section Tutorial 5: Surrogates with the Flowsheet.

• ML_AI – Selecting this model type in the Node Editor displays available neural network models; this tool cur-
rently supports TensorFlow Keras model files saved in Hierarchical Data Format 5 (.h5), the standard Keras
SavedModel format (folder containing .pb data files), or serialized to an architecture dictionary (.json) with sep-
arately saved model weights (.h5). Additionally, this tool supports PyTorch models saved in the standard format
(.pt), and Scikit-learn and Surrogate Modeling Toolbox models serialized in the standard Python pickle format
(.pkl). The examples folder contains demonstrative training and class scripts for models containing no custom

126 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

layer (see below for more information on adding custom layers), a custom layer with a preset normalization option
and a custom layer with a custom normalization function, as well as models saved in all supported file formats.
To use this tool, users must train and export a machine learning model and place the file in the appropriate folder
user_ml_ai_plugins in the working directory, as shown below. Optionally, users may save Keras models with
custom attributes to display on the node, such as variable labels and bounds. While training a Keras model with
custom attributes is not required to use the plugin tool, users must provide the necessary class script if the Keras
model does contain a custom object (see below for further information on creating custom objects). PyTorch,
Scikit-learn, and Surrogate Modeling Toolbox models do not have this requirement and the class script does not
need to exist in the plugins folder. This model type is used in the same manner as Pymodel Plugins, per the
workflow in Section Tutorial 5: Surrogates with the Flowsheet.

Custom Model Attributes

The high-level neural network library of Keras integrates with TensorFlow’s machine learning library to train
complex models within Python’s user-friendly framework. Keras models may be largely split into two types:

Sequential which build linearly connected model layers, and Functional which build multiple interconnected layers
in a complex system. More information on TensorFlow Keras model building is described by (Wu et al. 2020). Users
may follow the recommended workflow to install and use TensorFlow in a Python environment, as described in the

TensorFlow documentation: https://www.tensorflow.org/install.

When importing TensorFlow Keras models, users should ensure their Python environment contains the same Keras
package version used to train the model files. TensorFlow offers limited compatibility between versions. The example

files include models trained with TensorFlow 2.3 and 2.7; users with TensorFlow 2.7 should use the 2.7 models.

The ML AI Plugin supports adding neural networks of either type to FOQUS nodes; if a custom object is needed,
only the Functional API supports serializing custom attributes. If a model is saved with a custom input layer as shown

below, FOQUS will automatically read and import the custom attributes into the Node Editor.

PyTorch offers an optimized tensor library for deep learning. While Keras connects dependent layers sequentially or
simultaneously, PyTorch more explicitly uses prior layers as functional inputs for later layers in the neural network.
Similar to the built-in “custom object” registration feature in Keras, PyTorch allows the creation of custom layers

while defining the “forward” advancement method that builds the network prior to training. Users may obtain a great
deal of usage standards and best practices information as described in the PyTorch documentation:

https://pytorch.org/docs/stable/index.html.

Scikit-learn offers a machine learning library for predictive data analysis for a wide range of classification and
regression problems, including neural networks. To train deep learning neural networks, the package utilizes a

multi-layer regressor that optimizes squared-loss using LBFGS or stochastic gradient descent algorithms. These
models offer less flexibility than TensorFlow Keras or Torch models, while providing a much simpler syntax for
generating and leveraging neural networks. Users may find further information on the Scikit-learn package in the
documentation: https://scikit-learn.org/stable/index.html and further information on deep learning capabilities as

well: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_
network.MLPRegressor.

Surrogate Modeling Toolbox is an open-source Python package supporting a number of surrogate modeling methods,
including gradient-enhanced neural network (GENN) models. GENN models train parameters by minimizing a

modified Least Squares Estimator which accounts for partial derivative predictions, leading to better accuracy on
fewer training points compared to non-gradient-enhanced models. Gradient methods are applicable when training use

cases where system data is generally known, such as continuous physics-based problems like aerodynamics. If
gradient data is not known, users may run a gradient generation tool provided within FOQUS and can consults the
tool documentation here: Gradient Generation to Support Gradient-Enhanced Neural Networks. Users may find

further information on GENN models within Surrogate Modeling Toolbox in the documentation:
https://smt.readthedocs.io/en/stable/_src_docs/surrogate_models/genn.html.

The examples files located in FOQUS.examples.other_files.ML_AI_Plugin show how users may train new models or
re-save loaded models with a custom layer.

7.1. Contents 127

https://www.tensorflow.org/install
https://pytorch.org/docs/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://smt.readthedocs.io/en/stable/_src_docs/surrogate_models/genn.html

FOQUS Documentation, Release 3.22.dev0

Currently, FOQUS supports the following custom attributes:

• input_labels – list of string objects containing labels for each input variable (default: x1, x2, x3, . . .)

• input_bounds – list of tuple (pair) objects containing upper and lower bounds for each input variable (default:
(0, 1E5))

• output_labels – list of string objects containing labels for each output variable (default: z1, z2, z3, . . .)

• output_bounds – list of tuple (pair) objects containing upper and lower bounds for each output variable (default:
(0, 1E5))

• normalized – Boolean flag for whether the user is passing a normalized neural network model; to use this flag,
users must train their models with data normalized according to a specific scaling form and add all input and
output bounds custom attributes. The section below details scaling options.

• normalization_form - string flag required when normalization is True indicating a scaling option for FOQUS to
automatically scale flowsheet-level inputs to model inputs, and unscale model outputs to flowsheet-level outputs.
The section below details scaling options.

• normalization_function - optional string argument that is required when a ‘Custom’ normalization_form is used.
The section below details scaling options.

Data Normalization For Neural Network Models

In practice, large neural networks often tend towards overfitting and blurring of features; this is a particular issue with
data varying between many orders of magnitude. Normalizing the input data using the input bounds simplifies

internal calculations, reduces prediction error and minimizes the risk of feature loss. The simplest and most common
approach is to linearly scale the data such that the lower bound becomes 0 and the upper bound becomes 1:

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑑𝑎𝑡𝑎 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑧𝑛𝑜𝑟𝑚 =
𝑧𝑑𝑎𝑡𝑎 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

This scaling approach generalizes to a common formula:

𝑥𝑛𝑜𝑟𝑚 =
𝑓(𝑥𝑑𝑎𝑡𝑎) − 𝑓(𝑥𝑚𝑖𝑛)

𝑓(𝑥𝑚𝑎𝑥) − 𝑓(𝑥𝑚𝑖𝑛)

𝑧𝑛𝑜𝑟𝑚 =
𝑓(𝑧𝑑𝑎𝑡𝑎) − 𝑓(𝑧𝑚𝑖𝑛)

𝑓(𝑧𝑚𝑎𝑥) − 𝑓(𝑧𝑚𝑖𝑛)

FOQUS supports three scaling methods in this form: linear, base 10 logarithmic and base 10 exponential.
Additionally, FOQUS supports two modified base 10 scaling options. Users may also write their own normalization

functions and pass a string for FOQUS to parse internally via SymPy, a Python library for symbolic mathematics. It is
the responsibility of the user to ensure string objects are valid SymPy expressions, and FOQUS will automatically

scale and unscale using input and output variable bounds. For example, a custom version of ‘Log’ scaling following
SymPy syntax (not Python or Latex syntax) would take the form below:

>>> ...
>>> self.normalized = True
>>> self.normalization_form = "Custom"
>>> self.normalization_function = "(log(datavalue, 10) - log(dataminimum, 10))/
→˓(log(datamaximum, 10) - log(dataminimum, 10))"
>>> ...

The line below follows Python syntax and not SymPy syntax, and would yield the following error message:

128 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

>>> self.normalization_function = "(log10(datavalue) - log10(dataminimum))/
→˓(log10(datamaximum) - log10(dataminimum))"
"ValueError: Model attribute normalization_function has value (log10(datavalue) -␣
→˓log10(dataminimum))/(log10(datamaximum) - log10(dataminimum)) which is not a valid␣
→˓SymPy expression. Please refer to the latest documentation for syntax guidelines and␣
→˓standards: https://docs.sympy.org/latest/index.html"

Note that ‘value’, ‘minimum’ and ‘maximum’ are common reserved method names within Python and other modules,
and such the labels ‘datavalue’, ‘dataminimum’ and ‘datamaximum’ are used instead. Detailed messages will appear

in the console log for similar errors with specific causes. Custom expressions must use ‘value’, ‘minimum’ and
‘maximum’ to be recognized by FOQUS. More information on SymPy syntax, structure and standards may be found

in their latest release documentation: https://docs.sympy.org/latest/index.html.

Note that users must implement desired data normalization during model training, and both of these steps occur
externally to FOQUS. Users should ensure that data normalization results in an accurate neural network model

without overfitting before loading into FOQUS. Available scaling options and required flags are summarized in the
table below:

Table 1: Data Normalization Options

Variable Bounds normal-
ized

normaliza-
tion_form

Scaling Formula normaliza-
tion_function

None Optional (not re-
quired)

Must be
False or
absent

Recom-
mend
exclud-
ing (not
required)

𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒 Recommend
excluding (not
required)

Linear Required Must be
True

‘Linear’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

Recommend
excluding (not
required)

Log Base
10

Required Must be
True

‘Log’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 =
log10 (𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒)−log10 (𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚)

log10 (𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚)−log10 (𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚)

Recommend
excluding (not
required)

Power Required Must be
True

‘Power’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 =
10𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒−10𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

10𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚−10𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

Recommend
excluding (not
required)

Log Base
10 Modi-
fied

Required Must be
True

‘Log 2’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 =
log10 (9 * 𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 1)
Recommend
excluding (not
required)

Power
Modified

Required Must be
True

‘Power 2’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 = 1
9 *

(10
𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚 − 1)

Recommend
excluding (not
required)

Custom Required Must be
True

‘Custom’ 𝑑𝑎𝑡𝑎𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑓(𝑑𝑎𝑡𝑎𝑣𝑎𝑙𝑢𝑒, 𝑑𝑎𝑡𝑎𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝑑𝑎𝑡𝑎𝑚𝑎𝑥𝑖𝑚𝑢𝑚)

Must be a String
with proper
SymPy syntax

7.1. Contents 129

https://docs.sympy.org/latest/index.html

FOQUS Documentation, Release 3.22.dev0

Usage Example

The following code snippet demonstrates the Python syntax to train and save a Keras model with custom attributes;
users should refer to the examples folder for usage of non-Keras neural network trainers. The use of Dropout features

in training is not required, but decreases the risk of overfitting by minimizing the number of parameters in large
models. Similarly, normalizing data often results in more accurate models since features are less likely to be blurred
during fitting. Users may then enter unscaled input values and return unscaled output values in the Node Editor. Note
that the custom object class script containing the class and the NN model file itself must all share the same name to
import the custom attributes into a FOQUS node. If certain custom attributes are not used, it is best if users do not
include them in the custom class definition; for example, the attribute normalization_function is not required in this

example and therefore is excluded in the code below. See
FOQUS.examples.other_files.ML_AI_Plugin.mea_column_model__training_customnormform.py for an example

implementing a custom normalization function.

Users must ensure the proper script name is used in the following places, replacing example_model with the desired
model name:

• Custom class signature, class example_model(tf.keras.layers.Layer):

• Creating a callable object, super(example_model, self).__init__()

• Defining the class CONFIG, config = super(example_model, self).get_config()

• Creating the model, layers = example_model(

• Saving the model, model.save(‘example_model.h5’)

• The file names of the .h5 model file and custom class script.

See the example files in FOQUS.examples.other_files.ML_AI_Plugin for complete syntax and usage. The folder
contains a second model with no custom layer to demonstrate the plugin defaults. The default output values are not

calculated, so the node should be run to obtain the correct output values for the entered inputs.

To run the models, copy the appropriate model files or folders (‘h5_model.h5’, ‘saved_model/’, ‘json_model.json’,
‘json_model_weights.h5’) and any custom layer scripts (‘model_name.py’) into the working directory folder

‘user_ml_ai_models’. As mentioned earlier, PyTorch, Scikit-learn and Surrogate Modeling Toolbox models only
require the model file (‘pt_model.pt’, ‘skl_model.pkl’ or ‘smt_model.pkl’). For example, the model name below is

‘mea_column_model’ and is saved in H5 format, and the files
FOQUS.examples.other_files.ML_AI_Plugin.TensorFlow_2-10_Models.mea_column_model.h5 and

FOQUS.examples.other_files.ML_AI_Plugin.mea_column_model.py should be copied to
FOQUS-wd.user_ml_ai_models. For users with older versions of TensorFlow who wish to test the exampleodels,

some model files are provided in versions 2.3 and 2.7 as well as 2.10. Generally, TensorFlow is backwards compatible
for models two versions back (i.e., loading models trained in version 2.3 using version 2.5, or loading models trained

in version 2.8 using version 2.10 is supported).

To distinguish between H5 models and json models with H5 weight files, FOQUS requires the convention
(‘model1.h5’, ‘model1.py’) and (‘model2.json’, ‘model2_weights.h5’, ‘model2.py’) when naming model files. Users
should note that defining network layers and training the network is independent of saved file format, and only the

code after model.summary() in the script below will change. See the ‘training_customnormform’ example scripts for
specific syntax to save models as each Keras file format and non-Keras file type.

Required imports
>>> import numpy as np
>>> import pandas as pd
>>> import tensorflow as tf

Example follows the sequence below:
1) Main Code at end of file to import data and create model

(continues on next page)

130 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

2) Call create_model() to define inputs and outputs
3) Call custom layer object to define network structure, which uses
call() to define layer connections and get_config to attach
attributes to the custom layer
4) Back to create_model() to compile and train model
5) Back to code at end of file to save the model

custom class to define Keras NN layers and serialize (register) objects
>>> @tf.keras.utils.register_keras_serializable() # first non-imports line to include␣
→˓in working directory example_model.py
>>> class mea_column_model(tf.keras.layers.Layer):

give training parameters default values, and set attribute defaults to None
>>> def __init__(self, n_hidden=1, n_neurons=12,
>>> layer_act='relu', out_act='sigmoid',
>>> input_labels=None, output_labels=None,
>>> input_bounds=None, output_bounds=None,
>>> normalized=False, normalization_form='Linear',
>>> **kwargs):

>>> super(mea_column_model, self).__init__() # create callable object

add attributes from training settings
>>> self.n_hidden = n_hidden
>>> self.n_neurons = n_neurons
>>> self.layer_act = layer_act
>>> self.out_act = out_act

add attributes from model data
>>> self.input_labels = input_labels
>>> self.output_labels = output_labels
>>> self.input_bounds = input_bounds
>>> self.output_bounds = output_bounds
>>> self.normalized = True # FOQUS will read this and adjust accordingly
>>> self.normalization_form = 'Linear' # tells FOQUS which scaling form to use

create lists to contain new layer objects
>>> self.dense_layers = [] # hidden or output layers
>>> self.dropout = [] # for large number of neurons, certain neurons

can be randomly dropped out to reduce overfitting

>>> for layer in range(self.n_hidden):
>>> self.dense_layers.append(
>>> tf.keras.layers.Dense(
>>> self.n_neurons, activation=self.layer_act))

>>> self.dense_layers_out = tf.keras.layers.Dense(
>>> 2, activation=self.out_act)

define network layer connections
>>> def call(self, inputs):

>>> x = inputs # single input layer, input defined in create_model()

(continues on next page)

7.1. Contents 131

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

>>> for layer in self.dense_layers: # hidden layers
>>> x = layer(x) # h1 = f(input), h2 = f(h1), ... using act func
>>> for layer in self.dropout: # no dropout layers used in this example
>>> x = layer(x)
>>> x = self.dense_layers_out(x) # single output layer, output = f(h_last)

>>> return x

attach attributes to class CONFIG
>>> def get_config(self):
>>> config = super(mea_column_model, self).get_config()
>>> config.update({ # add any custom attributes here
>>> 'n_hidden': self.n_hidden,
>>> 'n_neurons': self.n_neurons,
>>> 'layer_act': self.layer_act,
>>> 'out_act': self.out_act,
>>> 'input_labels': self.input_labels,
>>> 'output_labels': self.output_labels,
>>> 'input_bounds': self.input_bounds,
>>> 'output_bounds': self.output_bounds,
>>> 'normalized': self.normalized,
>>> 'normalization_form': self.normalization_form,
>>> })
>>> return config

method to create model
>>> def create_model(data):

>>> inputs = tf.keras.Input(shape=(np.shape(data)[1],)) # create input layer

>>> layers = mea_column_model(# define the rest of network using our custom class
>>> input_labels=xlabels,
>>> output_labels=zlabels,
>>> input_bounds=xdata_bounds,
>>> output_bounds=zdata_bounds,
>>> normalized=True,
>>> normalization_form='Linear',
>>>)

>>> outputs = layers(inputs) # use network as function outputs = f(inputs)

>>> model = tf.keras.Model(inputs=inputs, outputs=outputs) # create model

>>> model.compile(loss='mse', optimizer='RMSprop', metrics=['mae', 'mse'])

>>> model.fit(xdata, zdata, epochs=500, verbose=0) # train model

>>> return model

Main code

(continues on next page)

132 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

import data
>>> data = pd.read_csv(r'MEA_carbon_capture_dataset_mimo.csv')

>>> xdata = data.iloc[:, :6] # here there are 6 input variables/columns
>>> zdata = data.iloc[:, 6:] # the rest are output variables/columns
>>> xlabels = xdata.columns.tolist() # set labels as a list (default) from pandas
>>> zlabels = zdata.columns.tolist() # is a set of IndexedDataSeries objects
>>> xdata_bounds = {i: (xdata[i].min(), xdata[i].max()) for i in xdata} # x bounds
>>> zdata_bounds = {j: (zdata[j].min(), zdata[j].max()) for j in zdata} # z bounds

normalize data - linear scaling is performed manually before training
>>> xmax, xmin = xdata.max(axis=0), xdata.min(axis=0)
>>> zmax, zmin = zdata.max(axis=0), zdata.min(axis=0)
>>> xdata, zdata = np.array(xdata), np.array(zdata)
>>> for i in range(len(xdata)):
>>> for j in range(len(xlabels)):
>>> xdata[i, j] = (xdata[i, j] - xmin[j])/(xmax[j] - xmin[j])
>>> for j in range(len(zlabels)):
>>> zdata[i, j] = (zdata[i, j] - zmin[j])/(zmax[j] - zmin[j])

>>> model_data = np.concatenate((xdata,zdata), axis=1) # Keras requires a Numpy array␣
→˓as input

define x and z data, not used but will add to variable dictionary
>>> xdata = model_data[:, :-2]
>>> zdata = model_data[:, -2:]

create model
>>> model = create_model(xdata)
>>> model.summary()

save model
>>> model.save('mea_column_model.h5')

After training and saving the model, the files should be placed in the working directory folder as shown below; if
FOQUS cannot find the custom class due to a missing or misnamed script, the node will not load the attributes. As

noted above, only the custom class lines should be included in the script:

Upon launching FOQUS, the console should include the lines boxed in red below to show the model files have been
successfully loaded:

The model will then appear in the Node Editor menu:

7.1.3 Surrogate Models Overview

Large-scale computational models are crucial tools to analyze complex systems. When coupled with uncertainty
quantification and optimization methods, the resulting computational expense becomes intractable. In order to face
the computational burden, surface approximation methods, black box models, or surrogate models are commonly

used. FOQUS provides a selection of surrogate modeling tools all using a similar work-flow. This section provides an
overview of the surrogate modeling features and capabilities. The details of each tool are provided in the tutorial

sections.

The following surrogate modeling tools are currently available:

7.1. Contents 133

FOQUS Documentation, Release 3.22.dev0

134 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

• ACOSSO – Adaptive COmponent Selection and Shrinkage Operator is a regularization method for simultane-
ous model fitting and variable selection based in nonparametric regression methods. ACOSSO is suitable for
approximating models with many inputs and no sharp changes.

• ALAMO – Automated Learning of Algebraic Models for Optimization generates algebraic models from data sets.
These surrogate models are ideal for equation oriented optimization problems (which are easily differentiable),
such as super structure optimization.

• BSS-ANOVA – Bayesian Smoothing Spline Analysis of Variance is a method similar to ACOSSO.

• iREVEAL – Surrogate models for CFD simulations using Kriging or Neural Networks. It contains special fea-
tures specifically designed for working with CFDs.

• Keras Neural Networks (keras_nn) – Surrogate models leveraging neural networks in TensorFlow Keras, a high-
level machine learning library that supports training sequential or interconnected graph-based models.

• PyTorch Neural Networks (pytorch_nn) – Surrogate models leveraging neural networks in PyTorch, an optimized
tensor library for deep learning that supports training sequential or interconnected graph-based models.

• Scikit-learn Neural Networks (scikit_nn) – Surrogate models leveraging neural networks in Scikit-learn, a pre-
dictive data analysis and surrogate modeling library that supports multi-layer regression and classification.

Data Selection

The Data tab allows the selection of training data to be used to generate a surrogate model (Surrogate Data Form). If
the session is associated with a flowsheet data (results from a single flowsheet run, optimization runs, or UQ

samples), then the flowsheet data is available to be the training data and the table will be populated accordingly.

Fig. 1: Surrogate Data Form

1. Run the surrogate modeling method.

7.1. Contents 135

FOQUS Documentation, Release 3.22.dev0

2. Stop the surrogate modeling method.

3. Surrogate modeling tool enables the user to select the desired surrogate modeling tool from the Tool drop-down
list.

4. Description of the selected surrogate method.

5. Add Samples enables the user to generate new training data using a model specified in the flowsheet or an
emulator (i.e., a basic response surface provided as part of the UQ module).

6. Flowsheet Results are summarized below.

7. The data table has a Menu drop-down list that contains display, import/export, and edit commands.

8. Select a data filter from the Current Filter drop-down for current data display.

9. Add or edit new data filters from Edit Filters. This dialog is shown in Figure Sort1 Data Filter Results.

10. The Display table displays the results of flowsheet evaluations stored in the FOQUS session file. The columns
are:

• SetName is a name assigned to samples. This is typically equivalent to one UQ sample run or one opti-
mization run.

• ResultName is a string representing a result name.

• Error is the simulation result status; 0 indicates success, other numbers represent an error. A column for
each node displays the error status of each node.

• Time displays the time when the result was stored.

• Elapsed Time describes how long a result took to calculate.

• Tags enables a list of string labels to be applied to results. This could be used to mark results to be used
for a particular purpose such as model validation.

• The remaining columns display the input and output variables.

Filters can be used to select data. See Section Tutorial 4: Flowsheet Result Data for more information on creating
filters to the results. The “All” and “None” filters are available by default. These can be used, for example, to assign

all the data as a training set, or to split the data into a separate training set and a test set.

Variables

The Variables section is illustrated in Figure Surrogate Variable Selection. This section allows selection of input and
output variables used in a surrogate model. Some surrogate methods such as ALAMO may generate and run

additional samples while building surrogates. The Min/Max columns provide bounds on the variables. Selecting the
checkbox next to the variable Name indicates that it should be included in the surrogate generation. Failure to select a

checkbox for any variables will result in error during surrogate generation.

Fig. 2: Surrogate Variable Selection

Note : The input and output variables that are displayed in this section are the ones present in the FOQUS flowsheet
nodes. If the user would like to include additional output variables (calculated based on the original node variables)
in the surrogate model, it is recommended to create them in the output section of the flowsheet node itself, from the
very beginning. With this approach, the calculated variables will be a part of the surrogate variable selection, and

their relation with the other node variables can be defined in the nodescript.

136 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

Method Settings

The Method Settings table is illustrated in Figure Surrogate Settings. The settings available in this table depend on
the surrogate tool. A description of each setting is provided in the third column of the table.

Fig. 3: Surrogate Settings

Execution

Clicking Run starts the surrogate model building process. The execution monitor displays after Run is clicked (see
Figure Surrogate Status Monitor). The execution monitor displays the status of the surrogate build. The messages

displayed depends on the surrogate tool.

Fig. 4: Surrogate Status Monitor

After a successful execution and model building, the results are displayed. Note that in this case, the surrogate
modeling tool ends with an error, the errors are displayed in this window. After surrogate generation completes, one

or two Python files will be generated depending on the tool. Each tool generates a file that encodes the surrogate
model as a general Python script that can be used to evaluate output values for UQ analyses within the UQ module.

The other file, if available, is a FOQUS flowsheet plugin model that allows the surrogate to be run in a FOQUS
flowsheet. The next version of FOQUS will generate a FOQUS flowsheet plugin model (i.e., the second file) for all

surrogate tools.

7.1.4 Tutorial

Tutorial 1: ALAMO

This tutorial focuses on the use of the ALAMO tool for building algebraic surrogate models. ALAMO builds
simplified algebraic models, which are particularly well suited for rigorous equation oriented optimization. To keep

the execution of this tutorial fast, a toy problem is used. In this case study the flowsheet calculations and sample
generation are done within FOQUS, alternatively, the user can provide a simulation model such as: Excel, Aspen

plus, Aspen custom modeler, etc.

Note: Before starting this tutorial the ALAMO product must be downloaded from the products page on the CCSI
website. The path for the ALAMO executable file must be set in FOQUS settings (see Section Settings).

The FOQUS file (Surrogate_Tutorial_1.foqus), where Steps 1 to 42 of this tutorial have been completed is located
in: examples/tutorial_files/Surrogates

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

7.1. Contents 137

FOQUS Documentation, Release 3.22.dev0

Flowsheet Setup

1. Open FOQUS.

2. Name the session “Surrogate_Tutorial_1” (Figure Session Set Up).

Fig. 5: Session Set Up

3. Navigate to the Flowsheet Editor (Figure Flowsheet Setup).

4. Add a Flowsheet Node named “eq.”

5. Display the Node Editor by clicking the Node Editor toggle button.

Fig. 6: Flowsheet Setup

The Node Editor displays (Figure Node Variables). The first step to setting up the node for this problem is to add
input and output variables to the node.

6. If the input variables table is not displayed as shown in Figure Node Variables, click the Variables tab and then
click the Input Variables toolbox section.

7. Add the variables “x1” and “x2” by clicking the Add icon (+) above the input table.

8. Edit the Min/Max value for both variables to be “-10.0” and “10.0.”

9. Add two output variables “z1” and “z2.”

Fig. 7: Node Variables

To keep the execution time short, the node will not be assigned to a simulation model and calculations are performed
directly in FOQUS.

10. Click on the Node Script tab in the Node Editor to enter the test equation (this step replaces the use of a simulator).

11. Enter the following equations (Figure Node Script):

f["z1"] = x["x1"] + x["x2"]
f["z2"] = x["x1"]**2 + x["x2"]**2

The node script calculations are written in Python. The dictionary “f” stores output values while the dictionary
“x” stores input values.

12. Test the model by running the flowsheet with the value “2” for “x1” and “x2.” After running, the output variables
should have the values “4.0” for “z1” and “8.0” for “z2.”

Creating Initial Samples

There are two ways to start an ALAMO run: (1) generate a set of initial data, (2) use ALAMO’s adaptive sampling
with no initial data and let ALAMO generate its own samples. Adaptive sampling can be used with initial data to

generate more points if needed. In this case, initial data is provided and adaptive sampling is used.

13. Select the UQ tool by clicking on the Uncertainty button on the Home window (Figure Add a New Sample
Ensemble).

14. Click the Add New button.

138 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

Fig. 8: Node Script

15. The Add New Ensemble - Model Selection dialog will appear. Click OK to set up the sampling scheme.

Fig. 9: Add a New Sample Ensemble

16. The sample ensemble setup dialog displays (Figure Sample Distributions). Select Choose sampling scheme.

17. Click the All Variable button.

18. Select the Sampling scheme tab.

Fig. 10: Sample Distributions

19. The Sampling scheme dialog should display (Figure Sample Methods). Select “Latin Hypercube” from the list.

20. Set the # of samples to “1000.”

21. Click Generate Samples.
22. Click Done.

23. Once the samples have been generated a new sample ensemble displays in the UQ tool window (Figure Run
Samples). Click Launch to run and generate the samples.

Data Selection

Initial and validation data can be specified by creating filters that specify subsets of flowsheet data. In this tutorial only
initial data will be used. A filter must be created to separate the results of the single test run from the UQ samples.

24. Click on the Surrogates button from the Home window. The surrogate tool displays Surrogate Data.

25. Select “ALAMO” from the Tool drop-down list.

26. Click Edit Filters in the Flowsheet Results section to create a filter.

27. Figure Data Filter Dialog displays the Data Filter Editor.

28. Add the filter for initial data.

1. Click New Filter, and enter “f1” as the filter name.

2. Type the Filter expression: c(“set”) = = “UQ_Ensemble”.

29. Click Done.

Variable Selection

In this section, input and output variables need to be selected. Generally, any input variables that vary in the data set
should be selected. However, in some cases, variables may be found to have no, or very little, effect on the outputs.
Only the output variables of interest need to be selected. Note: Each output is independent from each other and for

the model building, selecting one output is the same as selecting more.

30. Select the Variables tab (Figure Variable Selection).

31. Select the checkbox for both input variables.

7.1. Contents 139

FOQUS Documentation, Release 3.22.dev0

Fig. 11: Sample Methods

Fig. 12: Run Samples

Fig. 13: Surrogate Data

Fig. 14: Data Filter Dialog

140 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

32. Select the checkbox for both output variables.

Fig. 15: Variable Selection

Method Settings

The most important feature to generate “good” algebraic models is to configure the settings accordingly to the
problem to be solved. Each setting has a good description in FOQUS. The JSON parser is used to read method
settings values. Strings must be contained in quotes. Lists have the following format: [element 1, element 2].

33. Click on the Method Settings tab (see Figure ALAMO Method Settings and ALAMO Method Settings Continued).

34. Set the FOQUS Model (for UQ) to “alamo_surrogate_uq.py.”

35. Set the FOQUS Model (for Flowsheet) to “alamo_surrogate_fs.py”

36. Set Initial Data Filter to “f1”

37. Set SAMPLER to select the adaptive sampling method: “None” “Random” or “SNOBFIT.” Use “None” in this
tutorial.

38. Set MONOMIALPOWER to select the single variable term powers to [1,2,3].

39. Set MULTI2POWER to select the two variable term powers to [1].

40. Select functions to be considered as basis functions (EXPFCNS, LOGFCNS, SINFCNS, COSFCNS, LIN-
FCNS, CONSTANT).

41. Leave the rest of settings as default (see Table ALAMO Method Settings).

42. Save this FOQUS session for use in the ACOSSO and BSS-ANOVA tutorials.

Execution

43. Click the Run icon at the top of the window.

44. The ALAMO Execution tab starts displaying execution file path, sub-directories, input files, and output files.

1. ALAMO version.

2. License Information.

3. Step 0 displays the data set to be used by ALAMO.

4. Step 1 displays the modeler used by ALAMO to generate the algebraic model.

5. Once the surrogate model has finished, the equations are displayed in the execution window. It may be
necessary to scroll up a little. The result is shown in Figure ALAMO Execution.

6. Finally, the statistics display the quality metrics of the models generated.

7.1. Contents 141

FOQUS Documentation, Release 3.22.dev0

Fig. 16: ALAMO Method Settings

Fig. 17: ALAMO Method Settings Continued

Fig. 18: ALAMO Execution

142 Chapter 7. Surrogate Modeling

FOQUS Documentation, Release 3.22.dev0

Results

The results are exported as a PSUADE driver file that can be used perform UQ analysis of the models, and a FOQUS
Python plugin model that allows it to be used in a FOQUS flowsheet. The equations can also be viewed in the results

section.

See tutorial Section Tutorial 4: Surrogates with UQ Tools and Tutorial 5: Surrogates with the Flowsheet for
information about analyzing the model with the UQ tools or running the model on the flowsheet.

As mentioned in section 1.5 the method settings are very important. A brief description and hints are included in
Table ALAMO Method Settings.

Table 2: ALAMO Method Settings

Method Settings Description
Initial Data Filter Filter to be applied to the initial data set. Data filters help the user to generate models based on specific data for each variable.
Validation Data filter Data set used to compute model errors at the validation phase. The number of data points in a preexisting validation data set can be specified by the user.
SAMPLER Adaptative sampling method to be used. Options: “None”, “Random” and “SNOBFIT”. Adaptive sampling method to be used by ALAMO when more sampling points are needed by the model. If Random is used a simulator must be provided by the user. If SNOBFIT is used a simulator must be provided by the user and MATLAB must be installed.
MAXTIME Maximum execution time in seconds. This time includes all the steps on the algorithm, if simulations are needed they run in this time.
MINPOINTS Convergence is assessed only if the simulator is able to compute the output variables for at least MINPOINTS of the data set. A reduced number of MINPOINTS may reduce the computational time to get a model, but also reduces the accuracy of the model. MINPOINTS must be a positive integer.
PRESET Value to be used if the simulator fails. This value must be carefully chosen to be an otherwise not realizable value for the output variables.
MONOMIALPOWERS Vector of monomial powers to be considered as basis functions, use empty vector for none []. Exponential terms allowed in the algebraic model. i.e., if selecting [1,2] the model considers x1 and x1**2 as basis functions.
MULTI2POWER Vector of pairwise combination of powers to be considered as basis functions. Pairwise combination of powers allowed in the algebraic model. i.e., [1,2] allows terms like x1*x2 in the algebraic model.
MULTI3POWER Vector of three variables combinations of powers to be considered as basis functions.
EXPFCNS, LOGFCNS, SINFCNS, COSFCNS, LINFCNS, CONSTANT Use or not of exp, log, sin, cos, linear, and constant functions as basis functions in the model.
RATIOPOWER Vector of ratio combinations of powers to be considered in the basis functions. Ratio combinations of powers are [empty as default].
Radial Basis Functions Radial basis functions centered around the data set provided by the user. These functions are Gaussian and are deactivated if their textual representation requires more than 128 characters (in the case of too many input variables and/or datapoints).
RBF parameter Constant penalty used in the Gaussian radial basis functions.
Modeler Fitness metric to be used for model building. Options: BIC (Bayesian Information Criterion), Mallow’s Cp, AICc (Corrected Akaike’s Information Criterio), HQC (Hannan-Quinn Information Criterion), MSE (Mean Square Error), and Convex Penalty.
ConvPen Convex penalty term. Used if Convex Penalty is selected.
Regularizer Regularization method is used to reduce the number of potential basis functions before the optimization.
Tolrelmetric Convergence tolerance for the chosen fitness metric is needed to terminate the algorithm.
ScaleZ If used, the variables are scaled prior to the optimization problem is solved. The problem is solved using a mathematical programming solver. Usually, scaling the variables may help the optimization procedure.
GAMS GAMS is the software used to solve the optimization problems. The executable path is expected or the user must declare GAMS.exe in the environment path.
GAMS Solver Solver to be used by GAMS to solve the optimization problems. Mixed integer quadratic programming solver is expected like BARON (other solvers can be used).
MIPOPTCR Relative convergence tolerance for the optimization problems solved in GAMS. The optimization problem is solved when the optcr is reached. 5 to 1 % is expected (0.005 to 0.001).
MIPOPTCA Absolute convergence tolerance for mixed-integer optimization problems. This must be a nonnegative scalar.
LINEARERROR If true, a linear objective function is used when solving the mixed integer optimization problems; otherwise, a quadratic objective function is used.
CONREG Specify whether constraint regression is used or not, if true bounds on output variables are enforced.
CRNCUSTOM If true, Custom constraints are entered in the Variable tab.
CRNINITIAL Number of random bounding points at which constraints are sampled initially (must be a nonnegative integer).
CRNMAXITER Maximum allowed constrained regressions iterations. Constraints are enforced on additional points during each iteration (must be positive integer).
CRNVIOL Number of bounding points added per round per bound in each iteration (must be positive integer).
CRNTRIALS Number of random trial bounding points per round of constrained regression (must be a positive integer).
CUSTOMBAS A list of user-supplied custom basis functions can be provided by the user. The parser is not case sensitive and allows for any Fortran functional expression in terms of the XLABELS (symbol ^ may be used to denote power).

7.1. Contents 143

FOQUS Documentation, Release 3.22.dev0

Tutorial 2: ACOSSO

This tutorial covers the ACOSSO surrogate modeling method. The Adaptive COmponent Selection and Shrinkage
Operator (ACOSSO) surface approximation was developed under the Smoothing Spline Analysis of Variance

(SS-ANOVA) modeling framework (Storlie et al. 2011). As it is a smoothing type method, ACOSSO works best
when the underlying function is somewhat smooth. For functions which are known to have sharp changes or peaks,

etc., other methods may be more appropriate. Since it implicitly performs variable selection, ACOSSO can also work
well when there are a large number of input variables. The ACOSSO procedure also allows for categorical inputs

(Storlie et al. 2013).

This tutorial uses the same flowsheet and sample setup as the ALAMO tutorial in Section Tutorial 1: ALAMO.

The FOQUS file for this tutorial is Surrogate_Tutorial_1.foqus, and this file is located in:
examples/tutorial_files/Surrogates

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

The statistics software “R” is also required to use ACOSSO and BSS-ANOVA. Before starting this tutorial, you will
need to install R version 3.1 or later (see https://cran.r-project.org/).

Once R is installed, you will need to install the “quadprog” package. ACOSSO requires this package for solving
quadratic programming problems. You will only need to perform this step once.

1. Start R. In Windows, this must be done with administrative privileges. Either run this from an administrator
account, or right-click “R x64 3.1.2” and click “Run with administrator” and type in administrator credentials.

2. Inside the R console, type:

• install.packages(’quadprog’)

• library(quadprog)

• q()

The first line installs the package. If prompted for a CRAN mirror, select the one closest to you geographically.
The second line loads the package. The last line quits R. If prompted to save workspace image, choose ‘y’.

Once you have done these steps, ACOSSO is ready to be invoked inside FOQUS.

1. Set the path to the RScript executable.

1. Click the Settings button in the Home window.

2. Change the RScript path if necessary. The Browse button opens a file browser that can be used to set the
path.

2. Complete the ALAMO tutorial in Section Tutorial 1: ALAMO through Step 32, load the FOQUS session
saved after completing the ALAMO tutorial, or load the “Surrogate_Tutorial_1.foqus” file from the exam-
ples/tutorial_files/Surrogates folder.

3. Click the Surrogates button in the Home window (Figure ACOSSO Session Set Up).

4. Select “ACOSSO” in the Tool drop-down list.

5. Select the Method Settings tab.

6. Set “Data Filter” to “Initial.”

7. Set “Use Flowsheet Data” to “Yes.”

8. Set “FOQUS Model (for UQ)” to “ACOSSO_Tutorial_UQ.py.”

144 Chapter 7. Surrogate Modeling

http://cran.r-project.org/

FOQUS Documentation, Release 3.22.dev0

9. Set “FOQUS Model (for Flowsheet)” to “ACOSSO_Tutorial_FS.py.”

10. Click the Run icon (Figure ACOSSO Session Set Up).

Fig. 19: ACOSSO Session Set Up

11. The execution window will automatically display. While ACOSSO is running, the execution window may show
warnings, but this is normal.

12. When the run completes, a UQ driver file is created, allowing the ACOSSO surrogate to be used as a user-defined
response surface in UQ analyses. (See Section Tutorial 4: Surrogates with UQ Tools.)

13. ACOSSO also produces a flowsheet plugin; however.

Tutorial 3: BSS-ANOVA

This tutorial covers the BSS-ANOVA surrogate modeling method. The Bayesian Smoothing Spline ANOVA
(BSS-ANOVA) is essentially a Bayesian version of ACOSSO (Reich et al. 2009). It is Gaussian Process (GP) model

with a non-conventional covariance function that borrows its form from SS-ANOVA. It tackles the high
dimensionality (of inputs) on two fronts: (1) variable selection to eliminate uninformative variables from the model
and (2) restricting the level of interactions involved among the variables in the model. This is done through a fully

Bayesian approach which can also allow for categorical input variables with relative ease. Since it is closely related to
ACOSSO, it generally works well in similar settings as ACOSSO. The BSS-ANOVA procedure also allows for
categorical inputs (Storlie et al. 2013). In this current implementation, BSS-ANOVA is more computationally

intensive than ACOSSO, so ACOSSO is preferred for faster surrogate generation.

This tutorial uses the same flowsheet and sample setup as the ALAMO tutorial in Section Tutorial 1: ALAMO.

The FOQUS file for this tutorial is Surrogate_Tutorial_1.foqus, and this file is located in:
examples/tutorial_files/Surrogates

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

The statistics software “R” is also required to use ACOSSO and BSS-ANOVA. Before starting this tutorial, you will
need to install R version 3.1 or later (see http://cran.r-project.org/).

1. Set the path to the RScript executable.

1. Click the Settings button from the Home window.

2. Change the RScript path if necessary. The Browse button opens a file browser that can be used to set the
path.

2. Complete the ALAMO tutorial in Section Tutorial 1: ALAMO through Step 32, load the FOQUS session
saved after completing the ALAMO tutorial, or load the “Surrogate_Tutorial_1.foqus” file from the exam-
ples/tutorial_files/Surrogates folder.

3. Click the Surrogates button from the Home window (Figure BSS-ANOVA Session Set Up).

4. Select “BSS-ANOVA” in the Tool drop-down list.

5. Select the Method Settings tab.

6. Set “Data Filter” to “Initial.”

7. Set “Use Flowsheet Data” to “Yes.”

8. Set “FOQUS Model (for UQ)” to “bssanova_tutorial_uq.py.”

7.1. Contents 145

https://cran.r-project.org/

FOQUS Documentation, Release 3.22.dev0

9. Set “FOQUS Model (for Flowsheet)” to “bssanova_tutorial_fs.py.”

10. Click the Run icon (Figure BSS-ANOVA Session Set Up).

Fig. 20: BSS-ANOVA Session Set Up

11. The execution window will automatically display. While BSS-ANOVA is running, the execution window may
show warnings, but this is normal.

12. When the run completes, a UQ driver file is created, allowing the BSS-ANOVA surrogate to be used as a user-
defined response surface in UQ analyses. (See Section Tutorial 4: Surrogates with UQ Tools.)

13. BSS-ANOVA also produces a flowsheet plugin.

Tutorial 4: Surrogates with UQ Tools

For the purpose of this tutorial, we will use ACOSSO to demonstrate the use of a surrogate within the UQ module.
The steps are the same regardless of the surrogate tool chosen.

To perform the UQ analysis, Python is required for use the “User Regression” response surface that will be used.
Before starting this tutorial, you will need to install Python 2.7.x (not Python 3). (See

https://www.python.org/downloads/). In addition, if *.py files have been re-associated with other executables (e.g.
editors), please change the association back to python.exe.

The FOQUS file for this tutorial is Rosenbrock_no_vectors.foqus, and this file is located in:
examples/tutorial_files/Surrogates

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. Load a fresh session by clicking the Session button from the Home window. Select Open Session and then
navigate to the above-mentioned folder, and select “Rosenbrock_no_vectors.foqus.” This will load a session with
a simple flowsheet containing a single node.

2. Click Settings and ensure that (1) FOQUS Flowsheet Run Method is set to “Local”, and that (2) proper paths are
set for PSUADE and RScript.

3. Train an ACOSSO surrogate of this node by clicking the Surrogates button from the Home window.

1. Click Add Samples and select “Use Flowsheet”. This will display the Simulation Ensemble Setup dialog.

2. Within this dialog, ensure all variables are set to “Variable” type in the Distributions tab. In the Sampling
scheme tab, select “Monte Carlo” as your sampling scheme, set the number of samples to 100, and then
click Generate Samples to generate the set of input values. Click Done to return to the Surrogates screen.

3. Once sample generation completes, click the Uncertainty button from the Home window.

4. Click the Launch button to generate the samples.

5. Click the Surrogates button from the Home window. The Data tab of the Surrogates screen should now
displays a Flowsheet Results table that is populated with the values of the new input samples.

6. From the Variables tab, select all of the checkboxes. (There should be six checkboxes for input variables
and one checkbox for output variable.) Here, you are defining the inputs and outputs for your surrogate
function.

7. From the Method Settings tab, note the name of the file next to “FOQUS Model (for UQ)”. This will be
the name of the UQ driver file that contains the Python code that implements the surrogate function.

146 Chapter 7. Surrogate Modeling

https://www.python.org/downloads/

FOQUS Documentation, Release 3.22.dev0

8. On top of this screen, select “ACOSSO” as your surrogate tool from the Tool drop-down list and then click
on the green arrow to start training the surrogate.

9. Once complete, a popup window will display, reminding you of the location of the drive file. Note the
location as you will need this information later inside the UQ module.

4. Perform a response-surface-based uncertainty analysis by clicking the Uncertainty button from the Home win-
dow.

1. In the Uncertainty Quantification Simulation Ensembles table. A row corresponding to the ensemble that
was just generated for surrogate training should be displayed. This same ensemble can be used or a new
one can be created to be used as the test data set for analysis. In the row corresponding to the ensemble to
be analyzed, click the Analyze button to proceed. This action will bring up an analysis dialog.

2. Within this analysis dialog, navigate to “Analysis” section. For Step 1, select “Response Surface”. For Step
3, select “User Regression” in the first drop-down list. Lastly, for “User Regression File”, browse to the
same location as the UQ driver file that was generated within the Surrogates module. (This is the same
location that was previously noted from the popup message.) At this point, your surrogate function is now
set up as a user-defined response surface and all response-surface-based UQ analyses are accessible.

3. Click Validate (Step 4) to perform response surface validation. Once complete, a figure with cross-
validation results will be displayed: a histogram of errors to the left and a plot of predicted values versus
actual values to the right. For more information, refer to the UQ Tutorial in Section[tutorial.uq.rs]. The
response surface validation result is saved in the “Analyses Performed” section.

4. Once a “Response Surface” has been validated, other UQ analysis options are available. Choose “Uncer-
tainty Analysis” in Step 5 and click Analyze to perform uncertainty analysis using your ACOSSO surrogate.

5. Save the FOQUS session after all the required uncertainty analysis results are saved.

During validation, if the error, “RSAnalyzer: RSTest_hs.m does not exist.” displays, this is likely caused by
incompatibility with the surrogate and the test data. An example scenario might be your test data has six inputs, but

your surrogate assumes five inputs. This is easily fixed by returning to the Surrogates screen, clicking on the
Variables tab, and making sure the appropriate selections are made (i.e., check off six inputs instead of just five).

Important Note
Before opening the FOQUS file containing the response surface validation result, ensure that the corresponding UQ

driver file is present in the same path in the machine, from where it was accessed in the “User Regression File”
section, for validation. This is important to avoid problems while opening the FOQUS file, which may happen if it

isn’t able to find the UQ driver file.

Ideally, the UQ driver file should be present in the FOQUS working directory itself to avoid confusion.

Tutorial 5: Surrogates with the Flowsheet

This section provides a brief tutorial for using the flowsheet plugin models generated by surrogate modeling methods.
In a future FOQUS release all surrogate modeling methods will produce a model that can be run in a FOQUS

flowsheet. Currently iREVEAL (part of the CCSI Toolset) does not produce a flowsheet model.
Before doing this tutorial complete the ALAMO tutorial in Section :ref:`sec.surrogate.alamo`.

1. Open FOQUS. If FOQUS has not been closed since completing the ALAMO tutorial, close it and reopen it.
There is a known issue where existing flowsheet model plugins may not update until FOQUS is restarted.

2. Enter “FS_Plugin_Tutorial” as the Session Name.

3. Click the Flowsheet button from the Home window.

4. Click the Add Node icon in the left toolbar (see Figure Plugin Flowsheet).

5. Click a location for the node in the Flowsheet area.

7.1. Contents 147

FOQUS Documentation, Release 3.22.dev0

6. Enter “model” for the node name (without quotes).

7. Click the Node Editor icon in the left toolbar (see Figure Plugin Flowsheet).

8. In the Node Editor, select “Plugin” from the Model Type drop-down list.

9. Select “ALAMO_Tutorial_FS” from the Model drop-down list.

10. Set the Value of the Input Variables “eq.x1” to 2.

11. Set the Value of the Input Variables “eq.x2” to 3.

12. Click the Run icon in the left toolbar (see Figure Plugin Flowsheet).

13. Wait for the Flowsheet evaluation to complete. It should finish successfully.

14. Check the value of the Output Variables; the approximate values should be z1 = 5 and z2 = 13.

Fig. 21: Plugin Flowsheet

Tutorial 6: Neural Networks

This tutorial covers the TensorFlow Keras Neural Network surrogate modeling method via the plugin “keras_nn”.
The Surrogates module also supports PyTorch and Scikit-learn Neural Network surrogate modeling methods, which

follow the workflow below using the “pytorch_nn” and “scikit_nn” plugins, respectively.

More information on TensorFlow Keras model building is described by (Wu et al. 2020). Users may follow the
recommended workflow to install and use TensorFlow in a Python environment, as described in the TensorFlow

documentation: https://www.tensorflow.org/install.

Users may obtain a great deal of usage standards and best practices information as described in the PyTorch
documentation: https://pytorch.org/docs/stable/index.html.

Users may find further information on the Scikit-learn package in the documentation:
https://scikit-learn.org/stable/index.html and further information on deep learning capabilities as well:

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_
network.MLPRegressor.

The FOQUS file for this tutorial is Simple_flow.foqus, and this file is located in:
examples/tutorial_files/Flowsheets/Tutorial_4

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

The Python package tensorflow must be installed to use this surrogate plugin. Before starting this tutorial, you will
need to install the package by referring to the installation instructions in the TensorFlow documentation.

1. Load the “Simple_flow.foqus” file from the examples/tutorial_files/Flowsheets/Tutorial_4 folder.

2. Click the Surrogates button from the Home window (Figure Keras Neural Network Session Set Up).

3. Select “keras_nn” in the Tool drop-down list. For PyTorch, select “pytorch_nn”. For Scikit-learn, select
“scikit_nn”.

4. Select the Variables tab and select the desired input and output variables. Note that “graph.error” should not be
selected.

5. Select the Method Settings tab.

6. Set “Initial Data Filter” to “All”.

148 Chapter 7. Surrogate Modeling

https://www.tensorflow.org/install
https://pytorch.org/docs/stable/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor

FOQUS Documentation, Release 3.22.dev0

7. Set “n_hidden” to “1”, “n_neurons” to “12”, “layer_act” to “relu”, and “out_act” to “sigmoid”.

8. Ensure there are values present for “numpy_seed”, “random_seed”, and “tensorflow_seed” so results are repro-
ducible.

9. Set “epoch” to “500”, “verbose” to “0” (i.e. epoch results will not print during training) and ensure “output_file”
has a file name of the form “user_ml_ai_models/[NAME].keras”. NAME may be changed, if desired. The model
will be saved to the working directory folder user_ml_ai_models. For PyTorch, the file extension should be “.pt”.
For Scikit-learn, the file extension should be “.pkl”.

10. Click the Run icon (Figure Keras Neural Network Session Set Up).

Fig. 22: Keras Neural Network Session Set Up

10. The execution window will automatically display. While the regression training is finished running, TensorFlow
Keras will display some information on the model size and shape.

11. When the run completes, the script produces a saved model file which is compatible with the Machine Learn-
ing & Artificial Intelligence Plugin. (See Section Machine Learning & Artificial Intelligence Flowsheet Model
Plugins.)

In the future, these plugins will support additional items yielding enhanced surrogate modeling capabilities.

• Expanded data normalization options

• Offline data loading from a file, e.g. CSV, Excel, PSUADE

• Support for regression of multi-output neural networks

• Automatic regression parameter selection during model training from user-supplied parameter options

7.1. Contents 149

FOQUS Documentation, Release 3.22.dev0

150 Chapter 7. Surrogate Modeling

CHAPTER

EIGHT

SEQUENTIAL DESIGN OF EXPERIMENTS (SDOE)

8.1 Contents

8.1.1 Sequential Design of Experiments (SDOE)

Experimenters often begin an experiment with imperfect knowledge of the underlying relationship they seek to
model, and may have a variety of goals that they would like to accomplish with the experiment. In this chapter, we
describe how sequential design of experiments can help make the best use of resources and improve the quality of

learning. We describe the different types of space filling designs that can help accomplish this, define basic
terminology, and show a common sequence of steps that are applicable to many experiments. We show the basics for

the types of designs supported in the SDoE module, and provide some examples to illustrate the methods.

A sequential design of experiments strategy allows for adaptive learning based on incoming results as the experiment
is being run. The SDoE module in FOQUS allows the experimenter to flexibly incorporate this strategy into their
designed experimental planning to allow for maximally relevant information to be collected. Statistical design of
experiments is an important strategy to improve the amount of information that can be gleaned from the overall

experiment. It leverages principles of putting experimental runs where they are of maximum value, the
interdependence of the runs to estimate model parameters, and robustness to the variability of results that can be

obtained when the same experimental conditions are repeated. There are two major categories of designed
experiments: those for which a physical experiment is being run, and designs for a computer experiment where the

output from a computer model (based on underlying science or engineering theory) is explored. There are also
experimental situations when the goal is to collect both from a physical experiment as well as the computer model to
compare them and to calibrate some of the computer model parameters to best match what is observed. The methods
available in the SDoE module can be beneficial for all three of these cases. They present opportunities for accelerated

learning through strategic selection and updating of experimental runs that can adapt to multiple goals.

The current version of the SDoE module has functionality that can produce flexible space-filling designs. Currently,
three types of space-filling designs are supported:

Uniform Space Filling (USF) designs space design points evenly, or uniformly, throughout the user-specified input
space. These designs are common in physical and computer experiments where the goal is to have data collected

throughout the region. They are well suited to exploration, and being able to predict results at a new input
combination, as there will be some data available close by. To use the Uniform Space Filling design capability in the
SDoE module, the only requirement for the user is that the candidate set contains a column for each of the inputs and

a row for each possible run. It is also recommended (but not required) to have an index column to be able to track
which rows of the candidate set are selected in the constructed design.

Non-Uniform Space Filling (NUSF) designs maintain the goal of having design points spread throughout the desired
input space, but add a feature of being able to emphasize some regions more than others. This adds flexibility to the

experimentation, when the user is able to tune the design to have as close to uniform as desired or as strongly
concentrated in one or more regions as desired. This is newly developed capability, which has just been introduced

into the statistical and design of experiments literature, and has been added to the SDoE module. It provides the
experimenter with the ability to tailor the design to what is needed. To use the Non-Uniform Space Filling design

151

FOQUS Documentation, Release 3.22.dev0

capability in the SDoE module, the requirements are that the candidate set contains (a) one column for each of the
inputs to be used to construct the design, and (b) one column for the weights to be assigned to each candidate point,
where larger values are weighted more heavily and will result in a higher density of points close to those locations.

The Index column is again recommended, but not required.

Input-Response Space Filling (IRSF) designs seek to spread points evenly throughout the input space, but
simultaneously also spread points evenly throughout the response space. This is another newly developed capability,
recently introduced into the statistical and design of experiments literature, and has been added to the SDoE module.

It provides the experimenter with the ability to choose a design from a spectrum of “best” designs with different
weights for space-filling in the input and response spaces. Thus, if space-filling is more important to the experimenter

in one dimension than another, or if an equal balance is desired, the experimenter can choose the design with those
desired qualities from the Pareto front of designs given. This capability could be especially useful, for example, in a

multi-step system where a current response variable would become another input in the future, for which space-filling
would be desired in a future design. To use the Input-Response Space Filling design capability in the SDoE module,
the requirements are that the candidate set contains (a) one column for each of the inputs to be used to construct the

design, and (b) one column for each of the responses (at least one is required). Therefore, there must exist some
model such that a likely response can be calculated for each input combination. This type of design is only
recommended in situations when the model for the likely response values has been previously validated.

Fig. 1: Comparison of USF and NUSF designs

Key features of all approaches available in this module are: a) designs will be constructed by selecting from a
user-provided candidate set of input combinations, and b) historical data, which has already been collected can be

integrated into the design construction to ensure that new data are collected with a view to account for where data are
already available.

152 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Why Space-Filling Designs?

Space-filling designs are a design of experiments strategy that is well suited to both physical experiments with an
accompanying model to describe the process and to computer experiments. The idea behind a space-filling design is
that the design points are spread throughout the input space of interest. If the goal is to predict values of the response

for a new set of input combinations within the ranges of the inputs, then having data spread throughout the space
means that there should be an observed data point relatively close to where the new prediction is sought, regardless of

the new location.

In addition, if there is a model for the process, then having data spread throughout the input space means that the
consistency of the model to the observed data can be evaluated at multiple locations to look for possible discrepancies

and to quantify the magnitude of those differences throughout the input space.

Hence, for a variety of criteria, a space-filling design might serve as good choice for exploration and for
understanding the relationship between the inputs and the response without making a large number of assumptions
about the nature of the underlying relationship. As we will see in subsequent sections and examples, the sequential

approach allows for great flexibility to leverage what has been learned in early stages to influence the later choices of
designs. In addition, the candidate-based approach that is supported in this module has the advantage that it can make

the space-filling approach easier to adapt to design space constraints and specialized design objectives that may
evolve through the stages of the sequential design.

We begin with some basic terminology that will help provide structure to the process and instructions below.

• Input factors – these are the controllable experimental settings that are manipulated during the experiment. It is
important to carefully define the ranges of interest for the inputs (eg. Temperature in [200°C,400°C]) as well as
any logistical or operational constraints on these input factors (eg. Flue Gas Rate < 1000 kg/hr when Temperature
> 350°C)

• Input combinations (or design runs) – these are the choices of settings for each of the input factors for a particular
run of the experiment. It is assumed that the implementers of the experiment are able to set the input factors to the
desired operating conditions to match the prescribed choice of settings. It is not uncommon for the experimenter
to not have perfect control of the input settings, but in a designed experiment, it is important to have a target
value for each input and also to record the observed value if in fact it is different than what was intended. This
allows for more precise estimation of the model and improved prediction.

• Input space (or design space) – the region of interest for the input factors in which the experiment will be run.
This is typically constructed by combining the individual input factor ranges, and then adapting the region to take
into account any constraints. Any suggested runs of the experiment will be located in this region. The candidate
set of runs used by the SDoE module should provide coverage of all regions of this desired input space.

• Responses (or outputs) – these are the measured results obtained from each experimental run. Ideally, these are
quantitative summaries (measured by a numeric value or possibly a vector of numeric values) of a characteristic
of interest resulting from running the process at the prescribed set of operating conditions (eg. CO2 capture
efficiency is a typical response of interest for CCSI).

• Design criterion / Utility function – this is a mathematical expression of the goal (or goals) of the experiment
that is used to guide the selection of new input combinations, based on the prior information before the start of
the experiment and during the running of the experiment. The design criterion can be based on a single goal
or multiple competing goals, and can be either static throughout the experiment or evolve as goals change in
importance over the course of the experiment. Common choices of goals for the experiment are:

1. exploring the region of interest,

2. improving the precision (or reducing the uncertainty) in the estimation of model parameters,

3. improving the precision of prediction for new observations in the design region,

4. assessing and quantifying the discrepancy between the model and data, or

5. optimizing the value of responses of interest.

8.1. Contents 153

FOQUS Documentation, Release 3.22.dev0

An ideal design of experiment strategy uses the design criterion to evaluate potential choices of input combinations to
maximize the improvement in the criterion over the available candidates. If the optimal design strategy is sequential,

then the goal is to use early results from the beginning of the experiment to guide the choice of new input
combinations based on what has already been learned about the responses.

Matching the Design Type to Experiment Goals

At different stages of the sequential design of experiments, different objectives are common. We outline a common
progression of objectives for experiments that we have worked with in the CCSI project. Typically, an initial pilot

study is conducted to show that the right data can be collected and that measurements can be made with the required
precision. Often no designed experiment is used for this small study as it is just to establish viability to proceed.

Fig. 2: SDOE sequence of steps

Once the viability of the experimental set-up and measurement system has been established, it is common to proceed
to the next step of exploration. This is appropriate if little is known about the response and its characteristics. Hence,
a first experiment may have the goal of gaining some preliminary understanding of the characteristics of the response
across the input region of interest. Depending on how easy it is to collect and process data, this exploration might be
done in a single first experiment, or there may be opportunities to do several smaller stages (this is shown in the figure

above with the recursive arrow). It is particularly beneficial to do the exploration step in smaller stages if there is
uncertainty about what areas of the input space are feasible. This can help save resources by exploring slowly and

eliminating regions where there are problems.

After initial exploration, a common next step in the sequence of experiments is model building or model
refinement. For many CCSI experiments, the physical experiments are being collected in conjunction with an

underlying science-based model. If a model does not already exist, then one might be developed based on the initial
data collected in the previous stage. If a model already exists, then it can be refined by collecting new data where (a)
there is maximum uncertainty in prediction, or (b) where there are discrepancies between the data and the model. In
this way, the data collection from a physical experiment is used to calibrate the model and provide feedback about

where model performance needs improvement (both resolving inaccurate characterization of features and high
uncertainty). Often after the first set of data, some regions of the input space perform well, while others have issues.

It is ideal to target new data in regions where it can be most beneficially used to improve the model.

After the experimenter has confidence in the model, it can then be used for optimization. This involves using the
model to predict regions with desirable values of the response(s) of interest. Often the experiments associated with

this stage focus on a smaller region of the input space close to where the optimum lies. The final stage, confirmation

154 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

is often a very small experiment located right at the location where the model says the response is optimal. The goal
of this stage is to verify that the results predicted by the model are matched with what is observed from experimental

data. As with the pilot study, often this final stage involves only a small number of runs and no formal designed
experiment is run.

We now illustrate these stages with a simple example involving 2 inputs where the candidate set fills a rectangular
region defined by the range of each input. In the first stage, the pilot study (the two orange dots) are used to establish
viability of the test method and measurement system. The second stage, an initial exploratory experiment (six blue
dots) spreads the points throughout the defined region of interest. Here we start to see the benefit of using a sequential

approach as the blue dots take into account the locations where the orange pilot data were collected.

Fig. 3: SDoE Pilot study (orange) and Exploration (blue) stage

Based on this exploration, it may be discovered that one portion of the region (top right) is not viable for data
collection, or is not desirable for the observed response values. Hence, in future experiments no data should be

collected here. At this point, an initial model is constructed to combine what is known from the experimental data
with the underlying science.

In the next stage of experimentation, some additional runs are added (red dots) that are used for model refinement.
These are placed in regions where there is larger uncertainty in the model predictions and also seek to fill in empty

space.

8.1. Contents 155

FOQUS Documentation, Release 3.22.dev0

Fig. 4: New Constraint added (dashed black line)

156 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 5: Model Refining stage of experimentation (red dots)

8.1. Contents 157

FOQUS Documentation, Release 3.22.dev0

With the updated model based on the additional data, a region where good response values are possible is identified.
This becomes the focus of another experiment for optimizing the response. The oval indicates the region of desirable
responses, and the three green dots indicate the new input combinations collected to provide additional information.

Fig. 6: The optimal region for the responses (oval) with additional runs (green dots)

The final data collection involves two confirmation runs (black dots) at the identified optimal location to verify that
results are observed to match what the model predicts.

To conclude this example, we illustrate the power of the sequential approach to collecting data. In the figure below,
we show the 18 runs collected with the sequential approach (on left) and a typical 18-run space filling design (on

right). Both these experiments have the same total budget, but the sequential approach avoids placing much data in
the undesirable top right corner as well as has much more data concentrated close to where the overall optimal

combination of inputs is located.

158 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 7: SDOE confirmation runs (black dots)

8.1. Contents 159

FOQUS Documentation, Release 3.22.dev0

Fig. 8: A comparison of 2 18-run experiments: On left, the sequential approach. On right, the single experiment
approach.

8.1.2 Using the SDoE Module - The Basics

In this section, we will describe the basic steps in for creating a design with this module. We first give details for the
Uniform Space Filling Design, and then give a second set of details for a Non-Uniform Space Filling design.

When you first click on the SDOE button from the main FOQUS homepage, a first window appears. To create a
design, the progression of steps takes you through the Ensemble Selection box (top left), then a transition triggered
by the Confirm button to the Ensemble Aggregation box, and finally there are optional changes that can be made in
the box at the bottom of the window. The final step in this window is to click on which type of design do you want to

construct Uniform Space Filling, Non Uniform Space Filling, or Input-Response Space Filling.

Creating a New Candidate Set

To create a new candidate set the user can choose between two options: loading from an existing file or generating a
new candidate set providing some ranges for each input.

Note: To use this feature you need to install the latest version of PSUADE. For more details go to section Install
Optional Software

Loading from File

In the Ensemble Selection box, click on the Load from File. . . button to select the file(s) for the construction of the
design. Several files can be selected and added to the box listing the chosen files.

For each of the files selected using the pull-down menu, identify them as either a Candidate file or a History file.
Candidate .csv files are comprised of possible input combinations from which the design can be constructed. The
columns of the file should contain the different input factors that define the dimensions of the input space. The rows

of the file each identify one combination of input values that could be selected as a run in the final design. Typically, a
good candidate file will have many different candidate runs listed, and they should fill the available ranges of the

160 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

inputs to be considered. Leaving gaps or holes in the input space is possible, but generally should correspond to a
region where it is not possible (or desirable) to collect data.

History .csv files should have the same number of columns for the input space as the candidate file (with matching
column names) and represent data that have already been collected. The algorithm for creating the design aims to
place points in different locations from where data have already been obtained, while filling the input space around

those locations.

Both the Candidate and History files should be .csv files that have the first row as the Column heading. The Input
columns should be numeric. Additional columns are allowed and can be identified as not necessary to the design

creation at a later stage.

Generating a New Candidate Set

In the Ensemble Selection box, click on the Add New. . . button to select the file for the construction of the candidate
set. The following menu will appear:

The user can select between two options: using a history file or a template file.

1. History File. An existing .csv file with historical data is required. If this option is selected, then the inputs to be
used in the candidate set are extracted from the columns of the file.

2. Template File. The template file should be a simple comma separated values (.csv) file with at least three rows:

• Header with input names

• Minimum values

• Maximum values

An optional fourth row with default value can be added. If fourth row is not provided, the middle point between min
and max becomes the default value.

Note: Choosing History or Template file won’t change the next steps.

Once the user has decided on which file to use, click on the OK button and the following dialog will pop up:

8.1. Contents 161

FOQUS Documentation, Release 3.22.dev0

Decide on the type of input (variable or fixed) and the probability distribution function desired. If the input is set to
variable, the user can modify minimum and maximum values to define the range over which sampling should be

drawn. If input is set to fixed, then user selects the default value that will be used for all samples. Then click on the
Sampling Scheme tab and you’ll see the following menu:

Choose sampling scheme to be used. The Monte Carlo and Quasi Monte Carlo options provide candidates that are
scattered arbitrarily throughout the input space, while Latin Hypercube, Orthogonal Array and METIS provide

different approaches for structured distribution throughout the input space. Next, choose the number of samples you
want to generate and click on Generate Samples button. The user can preview the samples by clicking on the

Preview Samples button.

On the left-hand side table, you can explore the generated data for the different inputs and on the right-hand side list
you can select which inputs you want to plot.

162 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

8.1. Contents 163

FOQUS Documentation, Release 3.22.dev0

Once you are happy with the samples generated then click on Done button, so the new candidate set gets saved and
populated in the Ensemble Selection box.

Using the Data Imputation Feature

There is a chance the user wants to use a candidate set to generate a design (NUSF or IRSF only) that has missing
values either in the weights column (NUSF) or the response column (IRSF). The data imputation feature, uses the
response surface capability integrated from the Uncertainty Quantification (UQ) module to impute those missing

values and return the user a complete candidate set ready to use for the design creation.

The new complete candidate set is given as a separate file from the original set. It is very important that the original
incomplete candidate set be deleted or deselected (unchecked) before continuing. If not, the new and old candidate

sets will be combined, and will still contain missing values.

Note: To use this feature you need to install the latest version of PSUADE. For more details go to section Install
Optional Software

When the user clicks on the Load Existing Set button in the Design Setup section and selects a candidate set, the
program will run a quick file scan and show the missing values (if any) for all the existing columns.

We can see in this specific candidate set, there are 50 missing values for the Values column (that could be either our
weight column in NUSF or our response column in IRSF). Click OK and the incomplete candidate set will get loaded

in the Design Setup table. Notice there are new elements that become available in the candidate row (Response
Surface and Validate RS).

The user needs to select a response surface from the ones available in the drop-down menu:
1. Polynomial, Linear

2. Polynomial, Quadratic

3. Polynomial, Cubic

4. MARS

5. Gaussian Process

For this particular example we will be using MARS. Once the response surface is selected, click the Validate RS
button. A response surface validation plot will be generated and also an informative message window will pop up

164 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

8.1. Contents 165

FOQUS Documentation, Release 3.22.dev0

telling the user to confirm if the response surface satisfy their needs or to select a different response surface and
validate again if it doesn’t.

The validation plot is a plot of expected values based on the model versus the actual values. The better the model fits,
the closer the points will be around the diagonal line.

Since this particular validation plot looks good (note the points falling along the diagonal line), user can go ahead and
confirm the response surface by clicking the Confirm RS button.

After clicking the Confirm RS button, the Impute button under the Impute Data column will become available.
Click the Impute button to impute the missing values.

When the program is done imputing the missing values, it will populate the Design Setup table with a new candidate
set that will be an exact copy of the previous candidate set but with the missing values filled up.

If the user clicks on the View button under the Visualize column in the Design Setup table, the Preview Inputs
dialog will show up. Click on the Plot SDoE button and you will be able to see the original and the imputed values

(in red).

If the user is happy with the updated and complete candidate set, they can go ahead and perform business as usual.
Just remember to either delete the incomplete candidate set using the Delete Selected button or simply uncheck the

checkbox under the Select column in the Design Setup table.

166 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

8.1. Contents 167

FOQUS Documentation, Release 3.22.dev0

168 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

8.1. Contents 169

FOQUS Documentation, Release 3.22.dev0

170 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Basic Steps for a Uniform Space Design

We now consider some details for each of these steps:

1. In the Design Setup box, click on the Load Existing Set button to select the file(s) for the construction of the
design. Several files can be selected and added to the box listing the chosen files.

Fig. 9: SDOE Home Screen

2. For each of the files selected using the pull-down menu, identify them as either a Candidate file or a Previous
Data file. Candidate .csv files are comprised of possible input combinations from which the design can be

constructed. The columns of the file should contain the different input factors that define the dimensions of the input
space. The rows of the file each identify one combination of input values that could be selected as a run in the final

design. Typically, a good candidate file will have many different candidate runs listed, and they should fill the
available design region to be considered. Leaving gaps or holes in the input space is possible, but generally should

correspond to a region where it is not possible (or desirable) to collect data. The flexibility of the candidate set
approach allows for linear and non-linear constraints for one or more of the inputs to be incorporated easily.

Previous Data .csv files should have the same number of columns for the input space as the candidate file (with
matching column names), and represent data that have already been collected. The algorithm for creating the design
aims to place points separated from where data have already been obtained, while filling the input space around those

locations. If the experiment is being run sequentially, the Previous Data file should use the input values that were
actually implemented, not the target values from the previous designed experiment.

Both the Candidate and Previous Data files should be .csv files that have the first row as the Column heading. The
Input columns should be numeric. Additional columns are allowed and can be identified as not necessary to the

8.1. Contents 171

FOQUS Documentation, Release 3.22.dev0

design creation at a later stage.

3. Click on the View button to open the Preview Inputs pop-up widow, to see the list of columns contained in each
file. The left hand side displays the first few rows of input combinations from the file. Select the columns that you
wish to see graphically in the right hand box , and then click on Plot SDOE to see a scatterplot matrix of the data.

Fig. 10: SDOE view candidate set inputs

The plot shows histograms of each of the inputs on the diagonals to provide a view of the distribution of values as
well as the range of each input. The off-diagonals show pairwise scatterplots of each pair of inputs. This should

provide the experimenter with the ability to assess if the ranges specified and any constraints for the inputs have been
appropriately captured by the specified candidate set. In addition, repeating this process for any previous data will

provide verification that the already observed data have been suitably summarized. Candidate set values are shown in
gray, while previous data, if provided, is shown in pink.

4. Once the data have been verified for both the Candidate and Previous Data files (if a Previous Data file has been
included), click on the Continue button to make the Design Construction window active.

5. If more than one Candidate file was specified, then the aggregate_candidates.csv file that was created will have
combined these files into a single file. Similarly if more than one Previous Data file was specified, then the

aggregate_previousData.csv file will have been created with all runs from all these files. If only a single file was
selected for either the Candidate and Previous Data files, then their corresponding aggregated files will be the same

as the original.

Note: There are options to view the aggregated files for both the candidate and previous data files, simply scroll to
the right of the Design Construction window, with a similar interface as was shown in step 3. In addition, a single plot

172 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 11: SDOE plot of candidate set inputs

8.1. Contents 173

FOQUS Documentation, Release 3.22.dev0

Fig. 12: SDOE Design Construction

174 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

of the combined candidate and previous data files can be viewed. In this plot the points representing the candidate
locations and points of already collected data from the previous data file are shown in different colors.

6. Once the data have been verified as the desired set to be used for the design construction, then click on the
Uniform Space Filling button at the bottom right corner of the Design Construction window, then select Open

SDoE Dialog. This opens the second SDoE window, which allows for specific design choices to be made.

Fig. 13: SDOE second window

7. The first choice to be made for the design is whether to optimize using minimax or maximin. The first choice,
minimax, looks to choose design points that minimize the maximum distance that any point in the input space (as
characterized by the candidate set and previous data, if it is available) is away from a design point. Hence, the idea

here is that if we want to use data to help predict new outcomes throughout the input space, then we never want to be
too far away from a location where data was observed.

The second choice, maximin looks to choose a design where the design points are as far away from each other as
possible. In this case, the design criterion is looking to maximize how close any point is from their nearest neighbor.
In practice the two design criterion often give similar designs, with the maximin criterion tending to push the chosen

design points closer to the edges of the specified regions.

Hint: If there is uncertainty about some of the edge points in the candidate set being viable options, then minimax
would be preferred. If the goal is to place points throughout the input space with them going right to the edges, then

maximin would be preferred. Note, that creating the designs is relatively easy, so we recommend trying both
approaches to examine them and then choose which is preferred based on the summary plots that are provide later.

8.1. Contents 175

FOQUS Documentation, Release 3.22.dev0

8. The next choice falls under Desired Design Size, where the experimenter can select the sizes of designs to be
created. The Min Design Size specifies the smallest design size to be created. Note that the default value is set at 2,

which would lead to choosing the best two design runs from the candidate set to fill the space (after taking into
account any previous data that have already been gathered).

The Max Design Size specifies the largest design size to be created. The default value is set at 8, which means that if
this combination were used, designs would be created of size 2, 3, 4, 5, 6, 7 and 8. The number of integers between

Min Design Size and Max Design Size determines the total number of searches that the SDoE algorithm will
perform. Hence, it is prudent to make a thoughtful choice for this range, that balances design sizes that are potentially

of interest with the waiting time for the designs to be created. In the figure above, the Min Design Size has been
changed to 4, so that only the designs of size 4, 5, 6, 7 and 8 will be created.

9. Next, there are options for the columns of the candidate set to be used for the construction of the design. Under
Include? in the box on the right hand side, the experimenter has the option of whether particular columns should be
included in the space-filling design search. Unclick a box, if a particular column should not be included in the space

filling criterion search.

Next select the Type for each column. Typically most of the columns will be designated as Inputs, which means that
they will be used to construct the best uniform space filling design. In addition, we recommend including one Index
column which contains a unique identifier for each run of the candidate set. This makes it easier to track which runs
are included in the constructed designs. If no Index column is specified, a warning appears later in the process, but

this column is not strictly required.

Notice there is a new variable included in the first row of this box called __id. This column is an
automatically-generated index of all rows of the candidate set, meaning the column counts up from 1, uniquely

identifying each row. For example, if the candidate set contains 50 rows excluding the row of column names, the __id
column would be 1, 2, 3, . . . , 49, 50. The Include box next to __id can be unchecked if including this index column is
not desired, but again, it is highly encouraged to have an index column to easily identify which candidate set rows are
chosen in the design. The __id column Type is automatically set to Index. If using a different variable as the index

column, make sure to uncheck the Include box next to __id and also change the Type of the desired index column to
Index.

Finally, the Min and Max columns in the box allow the range of values for each input column to be specified. The
default is to extract the smallest and largest values from the candidate and previous data files, and use these as the
Min and Max values, respectively. This approach generally works well, as it scales the inputs to be in a uniform

hypercube for comparing distances between the design points.

Hint: The default values for Min and Max can generally be left at their defaults unless: (1) the range of some inputs
represent very different amounts of change in the process. For example, if temperature is held nearly constant, while a

flow rate changes substantially, then it may be desirable to extend the range of the temperature beyond its nominal
values to make the amount of change in temperature more commensurate with the amount of change in the flow rate.
This is a helpful strategy to make the calculated Euclidean distance between any points a more accurate reflection of
how much of an adjustment each input requires. (2) if changes are made in the candidate or previous data files. For
example, if one set of designs are created from one candidate set, and then another set of designs are created from a
different candidate set. These designs and the achieved criterion value will not be comparable unless the range of

each input has been fixed at matching values.

10. Once the design choices have been made, click on the Estimate Runtime button. This performs a small number
of iterations of the search algorithm to calibrate the timing for constructing and evaluating the designs. The time taken
to generate a design is a function of the size of the candidate set, the size of the design, as well as the dimension of the
input space. The slider below Estimate Runtime now indicates an estimate of the time to construct all of the designs
across the range of the Min Design Size and Max Design Size specified. The smallest Number of Random Starts is
10^3 = 1000, and is generally too small to produce a good design, but this will run very quickly and so might be useful
for a demonstration. However, it would generally be unwise to use a design generated from this small a set of random
starts for an actual experiment. Powers of 10 can be chosen with an Estimated Runtime provided below the slider.

176 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 14: SDOE second window after clicking Estimate Runtime

8.1. Contents 177

FOQUS Documentation, Release 3.22.dev0

Hint: The choice of Number of Random Starts involves a trade-off between the quality of the design generated
and the time spent waiting to generate the design. The larger the chosen number of random starts, the better the
design is likely to be. However, there are diminishing gains for increasingly large numbers of random starts. If

running the actual experiment is expensive, it is generally recommended to choose as large a number of random starts
as possible for the available time frame, to maximize the quality of the constructed design.

11. Once the slider has been set to the desired Number of Random Starts, click on the Run SDOE button, and
initiate the construction of the designs. The progress bar indicates how design construction is advancing through the

chosen range of designs between the specified Min Design Size and Max Design Size values.

12. When the SDOE module has completed the design creation process, the left window Created Designs will be
populated with files containing the results. The column entries summarize the key features of each of the designs,
including Optimality Method (whether minimax or maximin was selected), Design Size (d, the number of runs in

the created design), # of Random Starts, Runtime (number of seconds needed to create the design), Criterion
Value (the value obtained for the minimax or maximin criterion for the saved design).

Fig. 15: SDOE Created Designs

13. To see details of the design, the View button at the right hand side of each design row can be selected to show a
table of the design, as well as a pairwise scatterplot of any subset of the input columns for the chosen design. The
table and plot of the design are similar in characteristics to their counterparts described above for the candidate set.
Candidate points and previous data are still shown in gray and pink, respectively, while the newly selected design

points are shown in blue.

14. To access the file with the generated design, go to the SDOE_files folder, and a separate folder will have been

178 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 16: SDOE table of created design

8.1. Contents 179

FOQUS Documentation, Release 3.22.dev0

Fig. 17: SDOE pairwise plot of created design

180 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

created for each of the designs. In the example shown, 5 folders were created for the designs of size 4, 5, 6, 7 and 8,
respectively. In each folder, there is a file containing the design, with a name that summarizes some of the key

information about the design. For example, candidates_d6_n10000_w+G+lldg+L contains the design created using
the candidate set called candidates.csv, with d=6 runs, based on n=10000 random starts, and based on the 4 inputs W,

G, lldg and L.

Fig. 18: SDOE directory

When one of the design files is opened it contains the details of each of the runs in the design, with the input factor
levels that should be selected for that run. If an index column was included in the design, the index value will also be

shown.

To evaluate the designs that have been created, it is helpful to look at a number of summaries, including the criteria
values and visualizing the spread of the design points throughout the region. Recall that at the beginning of the design
creation process we recommended constructing multiple designs, with different design sizes. By examining multiple

designs, it is easier to determine which design is best suited to the requirements of the experiment.

In the Created Designs table, it is possible to see the criterion values for each of the designs. For minimax designs,
the goal is to minimize how far away any point in the candidate set is away from a design point. Hence, smaller values

of this criterion are better. It should be the case, that a larger design size will result in smaller values, as there are
more design points to distribute throughout the input space, and hence any location should have a design point closer

8.1. Contents 181

FOQUS Documentation, Release 3.22.dev0

Fig. 19: SDOE file containing a created design

182 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

to it. When evaluating between different sizes of design, it is helpful to think whether the improvement in the design
criterion justifies the additional budget from a larger design.

For maximin designs, the goal is to maximize the distance between nearest neighbors for all design points. So for
designs of the same size, we want the distance between neighboring points to be as large as possible, as this means

that we have achieved near equal spacing of the design points. However, when we are comparing designs of different
sizes, then the maximin criterion can be a bit confusing. Adding more runs to the design will mean that nearest

neighbors will need to get closer together, and hence we would expect that on average the criterion value would get
smaller for larger experiments. As with the minimax designs, we want to evaluate whether the closer packing of the

design points from a larger experiment is worth the increase in cost for the additional runs.

Hint: Note that the criterion values for minimax and maximin should not be compared - one is comparing distances
between design points and the candidate points, while the other is comparing distances between different design

points.

For all of the designs, it is important to use the View option to look at scatterplots of the chosen design. When
Previous Data points have been incorporated into the design, the plots will show how the overall collection of points
fills the input space. When examining the scatterplots, it is important to assess (a) how close the design points have
been placed to the edges of the region?, (b) are there holes in the design space that are unacceptably large?, and (c)

does a larger design show a worthwhile improvement in the density of points to justify the additional expense?

Based on the comparison of the criterion values and the visualization of the spread of the points, the best design can be
chosen that balances design performance with an appropriate use of the available budget. Recall that with sequential
design of experiments, runs that are not used in the early stages might provide the opportunity for more runs at later
stages. So the entire sequence of experimental runs should be considered when making choices about each stage.

Basic Steps for a Non-Uniform Space Design

We now consider some details for each of these steps for the second type of design, where we want to have different
densities of design points throughout the chosen input region:

1. In the Design Setup box, click on the Load Existing Set button to select the file(s) to be used for the construction
of the design. Several files can be selected and added to the box listing the chosen files.

2. For each of the files selected using the pull-down menu, identify them as either a Candidate file or a Previous
Data file. Candidate .csv files are comprised of possible input combinations from which the design can be

constructed. The columns of the file should contain the different input factors that define the dimensions of the input
space, as well as a column that will be used to specify the weights associated with each of the design points. Note that

there is a requirement for a column to be used to identify the prioritized regions of the input space. If this is not
provided, then a non-uniform space filling design cannot be created.

Previous Data .csv files should have the same number of columns for the input space as the candidate file (with
matching column names), and represent data that have already been collected. Note that a weight column is also
required for the history file, as the calculation of how close each of the points are to each other requires this. The
algorithm for creating the design aims to place points farther away from locations where data have already been

obtained, while also filling the input space around those locations.

Both the Candidate and Previous Data files should be .csv files that have the first row as the Column headings. The
Input and Weight columns should be numeric. Additional columns are allowed and can be identified as not necessary

to the design creation algorithm at a later stage.

3. Click on the View button to open the Preview Inputs pop-up window, to see the list of columns contained in each
file. The left hand side displays the first few rows of input combinations from the file. Select the columns that you
wish to see graphically in the right hand box. We will select columns X1, X2, and Values (use the shift, control, or

command key to select multiple columns), and then click on Plot SDOE to see a scatterplot matrix of the data.

8.1. Contents 183

FOQUS Documentation, Release 3.22.dev0

Fig. 20: SDOE Home Screen

184 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 21: SDOE plot of candidate set inputs

8.1. Contents 185

FOQUS Documentation, Release 3.22.dev0

The plot shows histograms of each of the columns on the diagonals to provide a view of the distribution of values as
well as the range of each input. The off-diagonals show pairwise scatterplots of each pair of columns selected. This
should provide the experimenter with the ability to assess if the ranges specified and any constraints for the inputs

have been appropriately captured for the specified candidate set. In addition, repeating this process for any historical
data will provide verification that the already observed data have been suitably characterized.

Note: In this file, the “Values” column contains the numbers that will be used to define the weights. The numeric
values contained in this column do not have any restrictions, except (a) there is a value provided for each row in the

candidate set, and (b) that larger values correspond to points that the user wishes to emphasize with regions
containing a higher density of points in the constructed design.

4. Once the data have been verified for both the Candidate and Previous Data files, click on the Continue button to
make the Design Construction window active.

5. If more than one Candidate file was specified, then the aggregate_candidates.csv file that was created will have
combined these files into a single file. Similarly if more than one Previous Data file was specified, then the

aggregate_previousData.csv file has been created with all runs from these files. If only a single file was selected for
either of the Candidate or Previous Data files, then their corresponding aggregated files will be the same as the

original.

There are options to view the aggregated files for both the candidate and previous data files, simply scroll to the right
of the Design Construction window, with a similar interface as was shown in step 3. In addition, a single plot of the

combined candidate and previous data files can be viewed. In this plot the points representing the candidate locations
and points of already collected data from the previous data file are shown in different colors.

6. Once the data have been verified as the desired set to be used for the design construction, click on the
Non-Uniform Space Filling button at the bottom right corner of the Design Construction window, then select Open

SDoE Dialog. This opens the second SDOE window, which allows for specific design choices to be made.

7. Unlike the Uniform Space Filling designs, the choice of the optimality criterion to be used is fixed at maximin.
Recall that a maximin design looks to choose design points that are as far away from each other as possible. In this
case, the design criterion is looking to maximize a weighted value of how close any two points are away from their
nearest neighbor. Larger weights inflate the calculated distance function larger, thus making the apparent distance

between the points seem closer than their standard non-weighted Euclidean distance.

8. The next choice to be made falls under Scaling Method, where the experimenter can select how the column
specified in the Weight column will be scaled. The scaling translates the values in the column specified with the

Weight label directly to the new range of [1, MWR], where MWR = Maximum Weight Ratio, which will be specified
in the next step. The smallest value in the weight column (MinValue) gets mapped to the value 1, while the largest
value in the column (MaxValue) gets mapped to the value MWR (which will be specified in the next step. For the

Direct MWR option, the shape of the histogram of the values is preserved, through the formula:

Scaled Weight = 1 + ((MWR - 1)*(Value - MinValue)/(MaxValue - MinValue))

For the Ranked MWR option, the values are sorted from smallest to largest (ties allowed) and then assigned a rank.
Rank = 1 corresponds to the smallest value, while the largest Rank is the number of rows in the candidate set

(NumCand). Then the scaled weights are assigned through the formula:

Scaled Weight = 1 + ((MWR - 1)*(Rank - 1)/(NumCand - 1))

Note: The designs created are dependent on the choice of weights selected. The Ranked MWR choice creates a
uniformly spaced order of points from “least important” to “most important” that results in a symmetric flat

histogram for the weights, while the Direct MWR scaling preserves the shape of the original values. If the user is not
sure which of the choices is better suited to their problem, we recommend generating designs for both choices and

comparing the results to see which are a better match for desired spacing throughout the input space.

186 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 22: SDOE second window

8.1. Contents 187

FOQUS Documentation, Release 3.22.dev0

9. Next, there are options for the values of the Maximum Weight Ratio (MWR) to be used. This is an important step
in the Non-Uniform Space Filling design process, as it gives the user control about how much difference there is in

the density of points. Smaller values of MWR (close to 1), result in a nearly uniform design. Larger values result in a
design that has a higher density of design points for the higher weighed regions, and more sparse for the lower

weighted regions. Since how this value impacts the density of the design is also a function of the histogram of the
values for the Weight column and the choice of the Scaling Method, we recommend constructing designs for several

MWR values and comparing their results.

The user can specify up to 5 MWR values, where for each of the MWR boxes, there is a set of choices that range
from 2 to 60. This range should provide considerably flexibility in choosing how unequal the spacing will be

throughout the design space.

Fig. 23: Choice of MWR Value and Columns

Note: Here are some recommendations about the role of the MWR value and the choice of scaling:

a. Think about changes to the MWR as multiplicative or exponential (e.g. 1 - 2 - 4 - 8 - 16), not linear (e.g. 1 - 2 -
3 - 4 - 5).

b. If there are many candidate points that should be weighted approximately equally, the direct weight scaling might
be more appropriate. The ranked weighting tends to spread out the final weights for similar values.

c. If the original candidate set weight distribution is close to uniformly distributed, then the Ranked MWR and
Direct MWR scalings will produce very similar designs.

d. The ranked scaling for weights makes it easier to predict what the impact of a choice of MWR value will be
(since the initial weight distribution is always approximately the same).

e. As the skew of the direct weight distribution increases, the effective MWR becomes consistently smaller than
the chosen value (only a small fraction of the candidates are using the edges of [1,MWR] range). Hence, for
skewed distributions, a larger MWR might be needed for the Direct scaling to get a design that is similar to a
given MWR value for the Ranked weight scaling.

188 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Also in this step, the columns of the candidate set to be used for the construction of the design are identified. Under
Include? in the box on the right hand side, the experimenter has the option of choosing whether particular columns

should be included in the space-filling design search. Uncheck a box, if a particular column should not be included in
the search.

Next select the Type for each column. Typically most of the columns will be designated as Inputs, which means that
they will be used to define the input space and to find the best design. For the Non-Uniform Space Design, there is a
required column for the Weights, which designates which rows in the candidate to emphasize (bigger weights) and

which to de-emphasize (smaller weights). In addition, we recommend including one Index column which contains a
unique identifier for each run of the candidate set. This makes tracking which runs are included in the constructed

designs easier. If no Index column is specified, a warning appears later in the process, but this column, while
recommended, is not strictly required.

Notice there is a new variable included in the first row of this box called __id. This column is an
automatically-generated index of all rows of the candidate set, meaning the column counts up from 1, uniquely

identifying each row. For example, if the candidate set contains 50 rows excluding the row of column names, the __id
column would be 1, 2, 3, . . . , 49, 50. The Include box next to __id can be unchecked if including this index column is
not desired, but again, it is highly encouraged to have an index column to easily identify which candidate set rows are
chosen in the design. The __id column Type is automatically set to Index. If using a different variable as the index

column, make sure to uncheck the Include box next to __id and also change the Type of the desired index column to
Index.

Finally, the Min and Max columns in the box allow the range of values for each input column to be specified. The
default is to extract the smallest and largest values from the candidate and previous data files, and use these. This

approach generally works well, as it scales the inputs to be in a uniform hypercube for comparing distances between
the design points.

Note: The default values for Min and Max can generally be left at their defaults unless: (1) the range of some inputs
represent very different amounts of change in the process. For example, if temperature is held nearly constant, while a

flow rate changes substantially, then it may be desirable to extend the range of the temperature beyond its nominal
values to make the amount of change in temperature more commensurate with the amount of change in the flow rate.
This is a helpful strategy to make the calculated distance between any points a more accurate reflection of how much
of an adjustment each input requires. (2) if changes are made in the candidate or previous data files. For example, if

one set of designs are created from one candidate set, and then another set of designs are created from a different
candidate set. These designs and the achieved criterion value will not be comparable unless the range of each input

has been fixed at matching values.

10. Once the design choices have been made, click on the Estimate Runtime button. This generates a small number
of iterations of the search algorithm to calibrate the timing for constructing and evaluating the designs. The time

taken to generate a design is a function of the size of the candidate set, the size of the design, as well as the dimension
of the input space.

Note: The number of random starts looks very different from what was done with the Uniform Space Filling Design.
In that case, the number of random starts was offered in powers of 10. In this case, since a more sophisticated search
algorithm is being used, each random start takes longer to run, but generally many fewer starts are needed. There is

set of choices for the number of random starts, which ranges from 10 to 1000. Producing a sample design for
demonstration purposes with a small number of random starts (say 10 to 30) should work adequately, but recall that
the choice of Number of Random Starts involves a trade-off between the quality of the design generated and the
time to generate the design. The larger the chosen number of random starts, the better the design is likely to be.

However, there are diminishing gains for increasingly large numbers of random starts. If running the actual
experiment is expensive, it is generally recommended to choose as large a number of random starts as possible for the

available time frame, to maximize the quality of the design generated.

8.1. Contents 189

FOQUS Documentation, Release 3.22.dev0

Fig. 24: Test SDOE timing

Fig. 25: Number of Random Start choices

190 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

11. Once the slider has been set to the desired Number of Random Starts, click on the Run SDOE button, and
initiate the construction of the designs. The progress bar indicates how design construction is advancing through the

chosen range of designs for each of the MWR values specified.

12. When the SDOE module has completed the design creation process, the left window Created Designs will be
populated with files containing the results. The column entries summarize the key features of each of the designs,

including MWR, Design Size (d, the number of runs in the created design), # of Random Starts, n, Runtime
(number of seconds needed to create the design), Criterion Value (the value obtained for the maximin criterion for

the saved design). Note that the criterion values are specific to the MWR value chosen, and hence should not be
considered comparable across different values.

Fig. 26: SDOE Created Designs

13. As with the Uniform Space Filling designs, to see details of the design, the View button at the right hand side of
each design row can be selected to show a table of the design, as well as a pairwise scatterplot of the input and weight
columns for the chosen design. The table and plot of the design are similar in characteristics to their counterparts for
the candidate set. Candidate points and previous data are still shown in gray and pink, respectively, while the newly
selected design points are shown in blue. If multiple designs were created with different MWR values (or using the
different Scaling Method choices), it is helpful to examine the plots to compare their properties to those sought by

the experimenter. A final choice should be made based on what is needed for the goals of the study.

14. Similar to the Uniform Space Filling designs, to access the file with the generated design, go to the SDOE_files
folder, and a separate folder will have been created for each of the designs. The structure of the folder and files
corresponds to what was done in the Uniform Space filling design instructions. The labeling of the files is a bit

different to reflect the choices that the user made in creating the design. For example, the file
nusf_d10_n1000_m30_Label+w+G+lldg+L+Values.csv contains the design of size 10 (d10), generated from 1000
random starts (n1000), with the maximum weight ratio (MWR) set to 30 (m30). The columns from the file that were

used include “Label”, “w”, “G”, “lldg”, “L” and “Values”.

When one of the design files is opened it contains the details of each of the runs in the design, with the input factor
levels that should be set for that run.

To evaluate and compare the designs that have been created, it is helpful to look at a number of summaries, including
the criteria values and visualizing the spread of the design points throughout the region. Recall that at the beginning
of the design creation process we recommended constructing multiple designs, with different MWR values, choosing

between the Direct and Ranked weighting strategies, and potentially with different design sizes. By examining
multiple designs, it is easier to determine which design is best suited to the requirements of the experiment.

8.1. Contents 191

FOQUS Documentation, Release 3.22.dev0

In the Created Designs table, it is possible to see the criterion values for each of the designs. When comparing two
designs of the same size with the same MWR value, the maximin criterion should be made as large as possible.

However, comparisons between designs with the same MWR value but of different sizes share the same issues that
were present in the uniform space filling case. Adding more runs to the design will mean that nearest neighbors will

need to get closer together, and hence we would expect that on average the criterion value would get smaller for larger
experiments. Hence, we want to evaluate whether the closer packing of the design points from a larger experiment is

worth the increase in cost for the additional runs.

Making comparisons for designs with different MWR values based on the design criterion is not recommended,
because the distance metric that is embedded in the non-uniform space filling design approach adjusts based on the
selected MWR value. Hence, it is not possible to make a direct comparison or easy interpretation of the values from

the criterion for this approach.

Hence for the NUSF designs, it is critical to use the View option to look at graphical summaries of the designs. Two
plots are produced: The first is the Closest Distance by Weight (CDBW) plot, and the second is the more familiar

pairwise scatterplot of the created design.

First, we describe the information that is contained in the CDBW plot. There are two portions to the plot. The lower
section shows a histogram of the weights in the candidate set. Note that the range of values goes from 1 to the MWR

value selected. For the figure below, we are looking at a design created with a MWR value of 5. The shape of the
histogram shows what values were available to be selected from the candidate set. The top portion of the plot, has a
vertical line for each of the design points selected (in this case 15 vertical lines for 15 design points). The location of

each vertical line shows the weight for the selected design point.

Second, a pairwise scatter plot of the design is provided to see how the design points fill the input space. Since the
spread of the points throughout the design space is intentionally non-uniform, it is helpful to see how the distribution
matches up with the specified weights provided in the candidate set. Recall that larger values of MWR lead to designs

that are less evenly distributed, while MWR values that approach 1 will become closer to uniform.

When Previous Data points have been incorporated into the design, the plots will show how the overall collection of
points fill the input space. When examining the scatterplots, it is important to assess (a) whether the increase in

concentration of points is located in the desired region?, (b) is the degree of non-uniformity what was desired?, (c)
how close the design points have been placed to the edges of the region?, (d) are there holes in the design space that

are unacceptably large?, and (e) does a larger design show a worthwhile improvement in the density of points to
justify the additional expense?

Recall that the effect of different MWR values depends on the size of the design, the spread of weights provided
across the candidate points and the shape of the input region of interest. Hence, constructing several designs and

comparing them can be an effective approach for obtaining the right design.

Based on the visualization of the spread of the points, the best design can be chosen that balances design performance
with an appropriate use of the available budget. Recall that with sequential design of experiments, runs that are not

used in the early stages might provide the opportunity for more runs at later stages. So the entire sequence of
experimental runs should be considered when making choices about each stage.

Basic Steps for an Input-Response Space-Filling Design

We now consider some details for each of these steps for the third type of design, where we want a design that seeks
to balance even spacing in the input space with even spacing in the response space. These designs can be used when
information is known about the likely output values for input combinations of interest. When information about the

likely output values is not available, a uniform space-filling design should be used.

We wish to simultaneously optimize space-filling in the input and the response spaces. However, it is often not
possible to achieve maximum space-filling in both spaces simultaneously. Instead, we may seek a design that offers a

compromise, performing relatively well in both the input and output spaces. Rather than offering a single “best”
design, the Input Response Space-Filling Design algorithm constructs a Pareto front of designs, a collection of

objectively best compromise designs that move across a spectrum of levels of input and response space-filling. At one

192 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 27: A sample Closest Distance by Weight (CDBW) plot for a 6-run design with MWR value of 5

8.1. Contents 193

FOQUS Documentation, Release 3.22.dev0

Fig. 28: A sample pairwise scatterplot for the constructed design with 6 runs and a MWR value of 5

194 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

end of the spectrum is the design that maximizes space-filling in the response space, while at the other end is the
design that maximizes space-filling in the input space. Connecting these two extremes, there is a collection of

compromise designs that balance space-filling in both spaces. Each design located on the Pareto front is the best
compromise design for that spot along the spectrum. Experimenters should examine each design located on the

Pareto front to find which of these compromise designs best suits their needs.

A step-by-step guide for using the SDOE module to create an Input-Response Space-Filling design is given below.
For a set of worked examples, see the Examples section.

1. In the Design Setup box, click on the Load Existing Set button to select the file(s) to be used for the construction
of the design. Several files can be selected and added to the box listing the chosen files.

Fig. 29: SDOE Module Home Screen

2. For each of the files selected, using the pull-down menu, identify them as either a Candidate file or a Previous
Data file. For Input-Response Space-Filling designs, Candidate .csv files are comprised of possible input and likely

response combinations from which the design can be constructed. In this file, there should be one column
corresponding to each of the different input factors that define the dimensions of the input space. Additionally, there
should be at least one column of likely response values included for each input combination. Typically, these likely
response values are determined from a previously-validated model of the underlying process. The provided likely

response values will be used to identify designs with good space-filling properties in the input space. Therefore, the
determination of even spacing in the response space is only as trustworthy as the model used to generate the likely

response values.

Note: It is important to make sure the process model is reliable and provides consistent results before attempting an

8.1. Contents 195

FOQUS Documentation, Release 3.22.dev0

input-response space-filling design. If not, it is recommended that the experimenter instead use a uniform
space-filling design.

As previously stated, there is a requirement for at least one column to contain the response values. If this is not
provided, then an input-response space-filling design cannot be created.

Previous Data .csv files should have the same number of columns for the input space as the candidate file (with
matching column names), and represent data that have already been collected. Note that at least one response column
is also required for the previous data file, as the determination of even spacing in the response space when taking into
account previous data requires this. The algorithm for creating the design aims to fill the input and response spaces,
while also not repeating input or response combinations that have already been run, as listed in the previous data.

Both the Candidate and Previous Data files should be .csv files that have the first row as the Column headings. The
Input and Response columns should be numeric. Additional columns are allowed and can, if desired, be identified as

not necessary to the design creation algorithm at a later stage.

Fig. 30: Columns in this Candidate Set

3. Click on the View button to open the Preview Inputs pop-up window, to see the list of columns contained in each
file. The left-hand side displays the first few rows of input combinations and responses from the file. Select the

columns that you wish to see graphically in the right-hand box, and then click Plot SDOE to see a scatterplot matrix
of the data.

Displayed on the diagonals of the scatterplot matrix are histograms of each of the columns. These plots provide a
view of the distribution of values as well as the range of each input. The off-diagonals show pairwise scatterplots of
each pair of columns selected. This should provide the experimenter with the ability to assess if the ranges specified

and any constraints for the inputs have been appropriately captured for the specified candidate set. In addition,
repeating this process for any previous data will provide verification that the already observed data have been suitably

characterized.

4. Once the data have been verified for both the Candidate and Previous Data files, click on the Continue button to
make the Design Construction window active.

5. If more than one Candidate file was specified, then the aggregate_candidates.csv file that was created will have
combined these files into a single file. Similarly, if more than one Previous Data file was specified, then the

aggregate_previousData.csv file has been created with all runs from these files. If only a single file was selected for
either of the Candidate or Previous Data files, then its corresponding aggregated file will be the same as the original.

To view the aggregated files for both the candidate and previous data files (if provided), click View, which lies in the
right-most column of the Output Directory row. Once selected, this has a similar interface as that shown in step 3. If

both types of files have been provided, a single plot of the combined candidate and previous data files will be
displayed. In this plot, the points representing the candidate locations and points of already collected data from the

previous data file are shown in different colors.

Note: Make sure to include previous data if it exists. If it exists and is included, the design creation algorithm will

196 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 31: Viewing Candidate Set

Fig. 32: SDOE Design Construction Window

8.1. Contents 197

FOQUS Documentation, Release 3.22.dev0

spread new design points out so as not to rerun an input combination that has already been run.

6. Once the data have been verified as the desired set to be used for the design construction, click on Input-Response
Space Filling from the Design Method drop-down menu in the Design Construction window. This opens the

second SDOE window, which allows for specific design choices to be made.

Fig. 33: SDOE Second Page

7. Similar to Non-Uniform Space Filling designs, the choice of the optimality criterion to be used is fixed at
maximin. Recall that a maximin design looks to choose design points that are as far away from each other as

possible. In this case, the design criterion is looking to maximize how close any two points in the input space are
away from their nearest neighbor and the same in the response space.

8. Select the Size of the design desired. A larger design will give more information than a smaller design. This choice
often comes down to the size of the budget for the experiment.

9. Next select the Type for each column. In general, most of the columns should be designated as Inputs, which
means they will be used to define the input space and to find the best design for the input space. For Input-Response

Space-Filling designs in particular, there is a required column for the Response, which the experimenter will
determine from the model. Multiple response columns can be given if desired. The algorithm will use the response(s)

to find the best design for the response space. All of the Input and Response columns will be used in the
determination of the Pareto front of best designs in both spaces.

In addition, there is a system-created Index column displayed amongst the other columns of the candidate set; it
should be listed first. Using an index column makes tracking which runs are included in the constructed designs

easier. It will have the name “_id” with a Min value of 1 and Max value that is the number of rows in the set. The

198 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Type will be pre-set to “Index”. If the candidate set already included an index column, simply uncheck the Include?
checkbox next to the column name that should be left out of design creation. Only one Index column can be included
in design creation. If using a different index column than the one provided, remember to change the Type to Index.

Finally, the Min and Max columns in the box allow the range of values for each input column, except for “_id”, to be
specified. The default is to extract the smallest and largest values from the candidate and previous data files, and use

these. This approach generally works well, as it scales the inputs to be in a uniform hypercube for comparing
distances between the design points.

Note: The default values for Min and Max can generally be left at their defaults unless: (1) The range of some
inputs represent very different amounts of change in the process. For example, if temperature is held nearly constant,

while a flow rate changes substantially, then it may be desirable to extend the range of the temperature beyond its
nominal values to make the amount of change in temperature more commensurate with the amount of change in the
flow rate. This is a helpful strategy to make the calculated distance between any points a more accurate reflection of
how much of an adjustment each input requires. (2) If changes are made in the candidate or previous data files. For
example, if one set of designs are created from one candidate set, and then another set of designs are created from a
different candidate set. These designs and the achieved criterion value will not be comparable unless the range of

each input has been fixed at matching values.

10. Once the design choices have been made, click on the Estimate Runtime button. This generates a small number
of iterations of the search algorithm to calibrate the timing for constructing and evaluating the designs. The time

taken to generate a design is a function of the size of the candidate set, the size of the design, as well as the
dimensions of the input space and response space.

Fig. 34: Number of Random Starts

Note: The number of random starts looks very different from what was done with the Uniform Space Filling Design.
In that case, the number of random starts was offered in powers of 10. In this case, similar to Non-Uniform

Space-Filling, since a more sophisticated search algorithm is being used, each random start takes longer to run, but
generally many fewer starts are needed. There is a set of choices for the number of random starts, which ranges from
5 to 500. Producing a sample design for demonstration purposes with a small number of random starts (say 5 to 30)
should work adequately, but recall that the choice of Number of Random Starts involves a trade-off between the
quality of the design generated and the time to generate the design. The larger the chosen number of random starts,
the better the design is likely to be. However, there are diminishing gains for increasingly large numbers of random
starts. If running the actual experiment is expensive, it is generally recommended to choose as large a number of

random starts as possible for the available time frame, to maximize the quality of the design generated.

8.1. Contents 199

FOQUS Documentation, Release 3.22.dev0

Fig. 35: Choosing the Number of Random Starts

11. Once the slider has been set to the desired Number of Random Starts, click on the Run SDOE button, and
initiate the construction of the designs.

12. When the SDOE module has completed the design creation process, the left window Created Designs will be
populated with a single file containing all results. The column entries summarize the key features of the collection of

designs, including Design Size (d, the number of runs in each of the created designs), # of Random Starts (n),
Runtime (number of seconds needed to create the designs), # of Designs (the number of designs found on the Pareto
front). Clicking the View button in the Plot SDOE column gives a view of the Pareto front, with options to examine

each of the created designs individually.

Fig. 36: Created Designs Window

13. To view each of the designs on the Pareto front, click View. The plot given is of the Pareto front, with circles
indicating the varying trade-offs of input and response space-filling criteria of each design on the Pareto front. By

definition, these are all “best” designs along some spectrum of space-filling in the input and response spaces. There
are a large number of other designs that would have been created, but when evaluated, would have been dominated

(have worse space-filling) in at least one dimension by a design along the Pareto front.

Click on any circle in the plot to see a pairwise scatterplot of that individual design. These created-design pairwise
scatterplots are similar in characteristics to their counterparts for the candidate set. It is helpful to examine the plots to
compare their properties to those sought by the experimenter. A final choice should be made based on what is needed

for the goals of the study.

14. To access the files with the generated designs, go to the SDOE_files folder, and a single folder will have been
created for each Pareto front of designs created. This folder will have a name containing the date and time the designs
were created. When opened, csv files of all created designs will be listed in the order they appear on the Pareto front,
with the best-response design displayed first, and the best-input design second-to-last. The last file in the folder will

200 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 37: Viewing a Pareto Front

8.1. Contents 201

FOQUS Documentation, Release 3.22.dev0

Fig. 38: Viewing the Pairwise Scatterplot of a Created Design

202 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

be a csv file of the Pareto front, containing the values of the input and response space-filling criteria for each design.

The created design files will have names similar to those given to files of Uniform and Non-Uniform Space-Filling
designs mentioned in previous sections. The labeling reflects choices made by the experimenter in creating the

designs. For example, the file irsf_design2_d15_n30__id+G+lldg+L+S+CapPct.csv contains the Input-Response
Space-Filling design (irsf) of size 15 (d15) generated from 30 random starts (n30). This design is the second design

on the Pareto front (design2), which means it has the second-highest value of the response space-filling criterion, and
the second-lowest value of the input space-filling criterion. The columns from the file that were used include “_id”

(system-generated ID column), “G”, “lldg”, “L”, “S”, and “CapPct”.

When one of these design files is opened it contains the details of each of the runs in the design, with the input factor
levels that should be set for that run.

To evaluate and compare the designs that have been created, it is helpful to look at a number of summaries, including
the criteria values of input and response space filling, and visualizing the spread of the design points throughout the

region by studying the pairwise scatterplots. Recall that at the beginning of the design creation process we
recommended constructing multiple sets of designs. By examining many designs, it is easier to determine which

design is best suited to the requirements of the experiment.

Efficient Implementation of Experimental Run Order

Once designs have been created, it is often important to optimize the run order to efficiently reach equilibrium and
allow for the maximum number of runs to be implemented within a constrained budget or time period. While

statisticians generally recommend using a randomized order for the experimental runs, it can sometimes mean the
difference of a small randomized experiment versus a larger non-randomized experiment.

Fig. 39: Comparison of the number of runs possible with an optimized run order (left) versus an inefficient randomized
run order (right)

In this section we describe how to generate an efficient run order for a design created using the Uniform Space Filling
or Non-Uniform Space Filling design options.

Once we created a design (USF or NUSF), it appears on the left panel in the Created Designs table. Click on the
design that we want to order (it is highlighted in blue as shown below). Then click on the button below named Order

Design, to order the design points in an efficient run order that sequences the runs to favor having nearby points
adjacent to each other in the run order.

A pop up window confirms the location of the newly ordered file (see below). Click ‘Yes’ to continue.

8.1. Contents 203

FOQUS Documentation, Release 3.22.dev0

Fig. 40: How to create an ordered design

Fig. 41: Message window for new design created

204 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Both design files (located in the designated folder) are saved in the csv format, which can be opened with your
preferred application (e.g. Microsoft Excel). You can produce a scatterplot of the ordered design file either using

FOQUS or any other external application.

The ordering scheme provides a method for the user to design the experimental run order that follows the minimal
path distance to traverse from one design point to another, i.e., minimal changes the the experimental processes. This

standardizes the range of each input factor t to be between 0 and 1, and then minimizes the sum of the Euclidean
distances between all of the points. Often this would be a preferred operational implementation to increase the

efficiency of the experiment, by reducing the time for the process to reach equilibrium. The implementation provided
uses the TSP (travelling sales person) algorithm as implemented in the ‘python-tsp’ library package for

ordering/ranking the design points.

An alternative to this approach is a simple sequential ordering (ascending or descending) of the most expensive input
factor. This is easily implemented by the user, and can be efficient for the running of the experiment, but should be
used cautiously because the run order might confound other changes in the system during the implementation of the

experiment.

8.1.3 Examples

Next, we illustrate the use of the SDOE capability for several different scenarios.

Example USF-1 constructs several uniform space filling designs of size 8 to 10 runs for a 2-dimensional input space
based on a regular square region with a candidate set that is a regularly spaced grid. Both minimax and maximin

designs are constructed to illustrate the difference in the criteria. Example USF-2 takes one of the designs created in
Example 1, and considers how it might be used for sequential updating with additional experimentation. In this case
the Example 1 design is considered as historical data, and the goal is to augment the design with several additional
runs. Example USF-3 considers a 5-dimensional input space based on a CCSI example, and demonstrates what the
process of Sequential Design of Experiments might look like with several iterations of constructing uniform space

filling designs.

Example NUSF-1 constructs several non-uniform space filing designs of size 15 in a 2-dimensional regular input
space. Several designs are generated using the same weights, but with different Maximum Weight Ratios (MWRs), to
illustrate how the concentration of points can be altered to match the experimenter’s preferences. Example NUSF-2

considers a CCSI example, with a non-regular region, and the weights that were derived from the width of the
confidence interval for prediction based on an existing model. The goal is to concentrate more of the new runs in

regions where there is greater uncertainty, and hence the widths of the confidence intervals are larger. Again multiple
designs are created to show how the MWR influences the concentration of the points in different regions.

Example IRSF-1 constructs a set of “best” designs (a Pareto front) along a spectrum of input and response
space-filling. The designs are based on a 2-dimensional input space and a 1-dimensional response. Different designs
along the Pareto front are compared to illustrate (a) what a Pareto front is and (b) how to choose a design from those

on the Pareto front.

The files for these tutorials are located in: examples/tutorial_files/SDOE

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

8.1. Contents 205

FOQUS Documentation, Release 3.22.dev0

Example USF-1: Constructing Uniform Space Filling minimax and maximin designs for a 2-D input
space

For this first example, the goal is to construct a simple space-filling design with between 8 and 10 runs in a
2-dimensional space based on a regular unconstrained square region populated with a grid of candidate points.

1. From the FOQUS main screen, click the SDOE button. On the top left side, select Load Existing Set, and select
the SDOE_Ex1_Candidates.csv file from examples folder. This identifies the possible input combinations from
which the design will be constructed. The more possible candidates that can be provided to the search algorithm
used to construct the design, the better the design might be for the specified criterion.

Fig. 42: Ex 1 Design Setup

2. Next, by selecting View and then Plot it is possible to see the grid of points that will be used as the candidate
points. In this case, the range for each of the inputs, X1 and X2, has been chosen to be between -1 and 1.

3. Next, click on Continue to advance to the Design Construction Window, and then select Uniform Space Filling
and click on Open SDoE Dialog to advance to the second SDOE screen, where particular choices about the
design can be made. On the second screen, select minimax for the Optimality Method Selection. Change the
Min Design Size and Max Design Size to 8 and 10, respectively. This will construct 3 minimax designs of size
8, 9 and 10. Next, uncheck the column called Label. This will mean that the design is not constructed using
this as an input. There should be an _id column automatically created containing unique identifiers to identify
which runs from the candidate set were chosen for the final designs. Since the ranges of each of X1 and X2 are
the bounds that we want to use for creating this design, we do not need to change the entries in Min and Max.

4. Once the choices for the design have been specified, click on the Estimate Runtime button to estimate the time

206 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 43: Ex 1 Candidate Grid

8.1. Contents 207

FOQUS Documentation, Release 3.22.dev0

Fig. 44: Ex 1 Minimax design choices

208 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

taken for creating the designs. For the computer on which this example was developed, if we ran the minimum
number of random starts (10^3=1000), it is estimated that the code would take 2 seconds to create the three
designs (of size 8, 9 and 10). If we chose 10^4=10000 runs, then the code is estimated to take 24 seconds. It
is estimated that 10^5=100000 random starts would take 4 minutes and 1 second, while 10^6=1 million random
starts would take approximately 41 minutes and 29 seconds. In this case, we selected to create designs based on
100000 random starts, since this was a suitable balance between timeliness and giving the algorithm a chance
to find the best possible designs. Hence, select 10^5 for the Number of Random Starts, and then click Run
SDOE.

5. Since we are also interested in examining maximin designs for the same scenario, we click on the Go Back to
Generate Design button in the Created Designs window to repopulate the right window with the same choices
that we made for all of the design options.

6. After changing the Optimality Method Selection to maximin, click on Estimate Runtime, select 10^5 for
the Number of Random Starts, and then click Run SDOE. After waiting for the prescribed time, the Created
Designs window will have 6 created designs - three that are minimax designs and three that are maximin designs.

7. We now consider the choices between the designs to determine which is the best match for our experimental
goals. We can see a list of the selected design points by clicking View for any of the created designs, and Plot
allows us to see the spread of the design points throughout the input region.

Clearly, there is a trade-off between the cost of the experiment (larger number of runs involve more time, effort and
expense) and how well the designs fill the space. When choosing which of the designs is most appropriate for the

experiment, it is important to remember that resources spent early in the process cannot be used later, so it is helpful
to balance early learning about the process, with the ability to identify and focus on the desired optimal location later.

There is also a small difference in priorities between the minimax and the maximin criteria. Minimax seeks to
minimize how far any candidate point (which defines our region of interest) is from a design point. Maximin seeks to

spread out the design points and maximize how close the nearest points are to each other. As noted previously,
minimax designs tend to avoid putting too many points on the edge of the region, while maximin designs often place

a number of points right on the edges of the input space.

By looking at the placement of the points, how well they fill the desired space, and the points proximity to the edge of
the region, the user can find a good match for their experimental goals. After considering all of the trade-offs between

the alternatives, select the design that best matches the goals of the experiment.

8. The file for the selected design can be found in the SDOE_files folder. The design can then be used to guide the
implementation of the experiment with the input factor levels for each run.

Example USF-2: Augmenting the Example USF-1 design in a 2-D input space with a Uniform Space
Filling Design

In this example, we consider the sequential aspect of design, by building on the first example results. Consider the
scenario where based on the results of Example 1, the experimenter selected to actually implement and run the 8 run

minimax design.

1. In the Design Setup box, click on Load Existing Set to select the candidate set that you would like to use for the
construction of the design. This may be the same candidate set that was used in Example 1, or it might have been
updated based on what was learned from the first data collection. For example, if it was learned that one corner
of the design space might not be desirable, then the candidate set can be updated to remove candidate points that
are now considered undesirable. For the File Type leave the designation as Candidate.

To load in the experimental runs that were already collected, click on Load Existing Set again, and select the design
file that was created in the SDOE_files folder. This time, change the File Type to Previous Data. If you wish to view

either of the candidate or previous data files, click on View to see either a table or plot.

2. Click on the Continue button at the bottom right of the Design Setup box. This will activate the Design Con-
struction box.

8.1. Contents 209

FOQUS Documentation, Release 3.22.dev0

Fig. 45: Ex 1 Minimax created designs

210 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 46: Ex 1 Created designs

8.1. Contents 211

FOQUS Documentation, Release 3.22.dev0

3. After examining that the desired files have been selected, click on the Uniform Space Filling button at the
bottom right corner of the Design Construction window. This will open the second SDOE window that shows
the Sequential Design of Experiments Set-Up window on the right hand side.

4. Select Minimax or Maximin for the type of design to create.

5. Select the Min Design Size and Max Design Size to match what is desired. If you wish to just generate a single
design of the desired size, make Min Design Size = Max Design Size. Recall that this will be the number of
additional points that will be added to the existing design, not the total design size.

6. Next, select the options desired in the box: a) Should any of the columns be excluded from the design creation?
If yes, then unclick the Include? box. b) For input factors to be used in the construction of the uniform space
filling design, make sure that the Type is designated as Input. The automatically generated index column __id
will be already listed as Index. If there is a label column for the candidates, then uncheck its Include? box to
make sure only one index column is used. c) Finally, you can optionally change the Min and Max ranges for the
inputs to adjust the relative emphasis that distances in each input range are designated.

7. Once the set-up choices have been made, click Estimate Runtime to find out what the anticipated time is for
generating designs based on different numbers of random starts.

8. Select the number of random starts to use, based on available time. Recall that using more random starts is likely
to produce a design that is closer to the overall best optimum.

9. After the SDOE module has created the design(s), the left window Created Designs is populated with the new
design(s). These can be viewed with the View option, where the plot now shows the Previous Data in pink, and
the newly added possible design in blue. This allows better assessment of the appropriateness of the new design
subject to the data that have already been collected.

10. To access the file that contains the created designs, go to the SDOE_files folder. As before, a separate folder will
have been created for each design.

11. If there is a desire to do another set in the sequential design, then the procedure outlined above for Example 2
can be followed again. The only change will be that this time there will be 3 files that need to be imported: A
Candidate file from which new runs can be selected, and two Previous Data files. The first of these files will
be the selected design from Example USF-1, and the second the newly created design that was run as a result of
Example USF-2. When the user clicks on Continue in the Design Setup window, the two Previous Data files
will be aggregated into a single Aggregated Previous Data file.

Example USF-3: A Uniform Space Filling Design for a Carbon Capture example in a 5-D input space

In this example, we consider a more realistic scenario of a sequential design of experiment. Here we explore a
5-dimensional input space with G, lldg, CapturePerc, L and SteamFlow denoting the space that we wish to explore

with a space-filling design. The candidate set, Candidate Points 8perc, contains 93 combinations of inputs that have
been validated using an ASPEN model as possible combinations for this scenario. The goal is to collect 18 runs in

two stages that fill the input space. There are some constraints on the inputs, that make the viable region irregular, and
hence the candidate set is useful to avoid regions where it would be problematic to collect data.

1. After selecting the SDOE tab in FOQUS, click on Load Existing Set and select the candidate file, Candidate
Points 8perc.

2. To see the range of each input and how the viable region of interest is captured with the candidate set, select
View and then plot. In this case we have chosen to just show the 5 input factors in the pairwise scatterplot.

3. After clicking Continue in the Design Setup box, and then Uniform Space Filling from the Design Construc-
tion box, the Generate Design box will appear on the right side of the second window. Here, select the options
desired for the experiment to be run. For the illustrated figure, we selected a Minimax design with 3 potential
sizes: 10, 11, 12. We specified that the column __id will be used as the Index, G, lldg, CapturePerc, L, Steam-
Flow will define the 5 factors to be used as inputs. We unclicked the Include? box for CO2 captured since we

212 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 47: Ex 3 Design Setup window

do not want to use it in the design construction, and also unclicked the Include? box for Test No. as we already
have an index column with __id.

4. After clicking Estimate Runtime and selecting the number of random starts to be used, click Run SDOE. After
the module has created the requested designs, they can be viewed and compared.

5. By clicking View and then Plot, the designs can be viewed. Suppose that the experimenter decides to use the 12
run design in the initial phase, then this would be the design that would be implemented and data collected for
these 12 input combinations.

6. After these runs have been collected, the experimenter wants to collect additional runs. In this case, return to
the first SDOE module window, and load in the candidate set (which can be changed to reflect any knowledge
gained during the first phase, such as undesirable regions or new combinations to include). The completed
experiment should also be included as a Previous Data file, by going to the SDOE_files folder and selecting the
file containing the appropriate design. Note that all candidate file(s) and previous data file(s) used together must
contain all the same column names, with the exception of the __id column since it is automatically created later
on.

7. After clicking Continue in the Design Setup box, and then Uniform Space Filling from the Design Construc-
tion box, the Generate Design box will appear on the right side of the second window. Here, select the options
desired for the experiment to be run. For the illustrated figure, we selected a Minimax design with a design size
of 6 (to use the remaining available budget). We again specified that the column __id will be used as the Index,
G, lldg, CapturePerc, L, SteamFlow will define the same 5 factors to be used as inputs, and we uncheck the
unneeded columns Test No. and CO2 captured.

8. After clicking Estimate Runtime and selecting the number of random starts to be used, click Run SDOE.
After the module has created the requested design, it can be viewed. After selecting View and then Plot, the
experimenter can see the new design with the previous data runs included. This provides a good plot to allow

8.1. Contents 213

FOQUS Documentation, Release 3.22.dev0

Fig. 48: Ex 3 plot of viable input space as defined by candidate set

214 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 49: Ex 3 generate design window for first stage

8.1. Contents 215

FOQUS Documentation, Release 3.22.dev0

Fig. 50: Ex 3 10,11,12 run designs created for first stage

216 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 51: Ex 3 chosen experiment for first stage

8.1. Contents 217

FOQUS Documentation, Release 3.22.dev0

Fig. 52: Ex 3 design setup box for second stage

the complete sequence of two experiments to be examined as a combined set of runs. Note that the first and
second stages are shown in different colors. The first stage is shown in pink while the second is shown in blue.
Candidate points not part of either stage are in gray.

Example NUSF-1: Constructing Non-Uniform Space Filling maximin designs for a 2-D input space

For this first Non-Uniform Space Filling design example, the goal is to construct a non-uniform space-filling design
with 20 runs in a 2-dimensional space based on a regular unconstrained square region populated with a grid of

candidate points. The choice of how to construct the candidate set should be based on: a) what is the precision with
which each of the inputs can be set in the experiment, and b) timing for generating the designs. Note that the finer the

grid that is provided in the candidate set, the longer the search algorithm will take to run for a given number of
random starts. In general a finer grid will give better options for the best design, but with diminishing returns after a

large number of candidates have already been provided

As noted previously in the Basics section, in addition to specifying the candidate point input combinations, it is also
required to supply an additional column of weights. This column will provide the necessary information about which
regions of the input space should be emphasized more, and which should be emphasized less. The figure below shows

some of the characteristics of the candidate set.

The candidates are laid out in a regular grid with equal spacing between levels of each of X1 and X2. A contour plot
of the weight function that was used to generate the weights is shown on the left side of the plot. The weights range

from -14.48 to 50, with the largest values of the weights near the top left corner of the input space. The smallest
values lie in the bottom right corner. On the right hand side, we can see a plot where the relative size of the points is
proportionate to the size of the weight assigned to that candidate point. This second representation is helpful when
the candidate points do not fall on a regular grid, or if the relationship for determining the weights is not smooth.

Here is the process for generating NUSF designs for this problem:

218 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 53: Ex 3 generate design box for second stage

8.1. Contents 219

FOQUS Documentation, Release 3.22.dev0

Fig. 54: Ex 3 chosen experiment for second stage

220 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 55: Ex NUSF1 Candidate set of points with their associated weights. Left shows the underlying relationship used
to generate the design, and right shows the candidates with the size of the point proportional to the assigned weight.

1. From the FOQUS main screen, click the SDOE button. On the top left side, select Load Existing Set, and select
the “NUSFex1.csv” file from examples folder.

2. Next, by selecting View and then Plot it is possible to see the grid of points that will be used as the candidate
points. In this case, the range for each of the inputs, X1 and X2, has been chosen to be between -1 and 1.

3. Next, click on Continue to advance to the Design Construction Window, and the click on Non-Uniform Space
Filling to advance to the second SDOE screen, where particular choices about the design can be made. On the second

screen, the first choice for Optimality Method Selection is automatic, since the non-uniform space filling designs
only use the Maximin criterion. The next choice is to choose the Scaling Method, where the choices are Direct and
Ranked. The default is to use the Direct scaling which translates the weights provided with a linear transformation so

that they lie in the range 1 to whatever MWR value is selected below. For this example, we choose the option for
Direct scaling.

Next select the Design size, where here we have decided to construct a design with 20 runs. The choice of the
Maximum Weight Ratio or MWR is one of the more difficult choices that the experimenter will need to make, since

it is often one that they do not have much experience with. It is for this reason that we recommend constructing
several designs with different MWR values and then comparing the results to see which value is best suited for the

experiment to be run. Recall that a value of 1 corresponds to a uniform space filling design, while larger values will
place increasing concentration of points near the regions with larger weight values. In this case, we select to generate
3 designs, with MWR values of 5, 10 and 30. This should give a good variety of designs to choose from after they

have been constructed.

There are also choices for which columns to include in the analysis. Here we use all 4 columns for creating the design,
so all Include? boxes remain checked. The __id column is automatically created and we will use it as the index

column here. In addition, it is possible to see the range of values for each of the columns in the spreadsheet. Here the
two input columns range from -1 to 1, while the “RawWt” column ranges from -8 to 50. The user can change these

values if they wish to rescale the ranges to widen or narrow them, but in general these values can be left as is.

4. Once the choices for the design have been specified, click on the Estimate Runtime button to estimate the time
taken for creating the designs. For the computer on which this example was developed, if we ran 30 random

8.1. Contents 221

FOQUS Documentation, Release 3.22.dev0

Fig. 56: Ex NUSF1 choice of file for candidate set

starts, it is estimated that the algorithm would take 10:08 minutes to generate the 3 designs with MWR values
of 5, 10, 30. Note that the timing changes linearly, so using 20 random starts would take twice as long as using
10 random starts. Recall that the choice of the number of random starts involves a trade-off between getting the
designs created quickly and the quality of the designs. For many applications, we would expect that using at least
30 random starts would produce designs that are of good quality.

5. Once the algorithm has generated the designs, the left box called Created Designs populates with the 3 designs
that we have created. Some of the key choices of the designs are summarized in the columns. The size of the
design, the MWR value and the number of random starts are all noted. In addition, the time to create the design is
also included. The criterion value is provided. Recall from the discussion in the Basics section, that the criterion
value can be compared for designs of the same size and with the same MWR value, but should not be compared
across design sizes or across different MWR values.

6. To examine each of the created designs, select View and choose the columns to be included, and click Plot. For
this example we included all of the columns except the index column __id. Note that two plots are created for
each design. The first is the Closest Distance by Weight (CDBW) plot, and the second is the more familiar
pairwise scatterplot of the created design.

First, we describe the information that is contained in the CDBW plot. There are two portions to the plot. The lower
section shows a histogram of the weights in the candidate set. Note that the range of values goes from 1 to the MWR

value selected. For the figure below, we are looking at a design created with a MWR value of 5. The shape of the
histogram shows what values were available to be selected from. The top portion of the plot, has a vertical line for
each of the design points selected (in this case 20 vertical lines for 20 design points). The location of each vertical
line shows the weight for the selected design point. In this case, the smallest weight selected had weight around a

value of 2, while there are several design points chosen that have weight close to the maximum possible (the MWR
value). This allows the user to see how much emphasis was placed on getting the larger weight values into the design.

The second plot is the more familiar scatterplot of the design points. It is clear that the non-uniform space filling

222 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 57: Ex NUSF1 Choice of settings for generating NUSF designs

Fig. 58: Ex NUSF1 specification of timing to generate the requested designs.

8.1. Contents 223

FOQUS Documentation, Release 3.22.dev0

Fig. 59: Ex NUSF1 created designs for three MWR values of 5, 10 and 30

224 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 60: Ex NUSF1 Closest Distance by Weight (CDBW) plot for the constructed design with MWR values of 5

8.1. Contents 225

FOQUS Documentation, Release 3.22.dev0

approach has lived up to its name and has generated a design that has a greater emphasis of points for the larger
weights. The design still provides space filling throughout the region, but with very different densities of points for

the various regions.

Fig. 61: Ex NUSF1 pairwise scatterplot for the constructed design with MWR values of 5

7. The next step is to repeat the process for the other two designs created. In this case we can see that the NUSF
designs for MWR values of 10 and 30 create even more concentrated designs in the region with higher weights.
The figure below shows the collection of the CDBW plot for MWR values of 10 and 30.

When we compare the three CDBW plots for the designs with MWR of 5, 10 and 30, we see that more of the points
are shifted to the right closer to the maximum weight value as we increase the MWR value. This gives control to the

user to adjust the relative density of points for different weights.

When we compare the three designs, we can see that increasing the MWR produces a design that moves more of the
points closer to the higher weight regions of the input space. This gives the user the control that is needed to create a

customized design that matches the desired concentration of points in the regions where they are desired. After

226 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 62: Ex NUSF1 Closest Distance by Weight (CDBW) plot for the constructed designs with MWR values of 10 and
30

Fig. 63: Ex NUSF1 pairwise scatterplot for the constructed designs with MWR values of 10 and 30

8.1. Contents 227

FOQUS Documentation, Release 3.22.dev0

examining the different summary plots for the three designs, the user can choose the plot that is the best match to their
experimental needs.

Example NUSF-2: Constructing Non-Uniform Space Filling for a 4-Input Carbon Capture example

For this second Non-Uniform Space Filling design example, we consider a carbon capture example with 4 inputs (G,
lldg, w, L). In this case the experimenter is interested in constructing a 10 run design that is space filling, but also

places a slightly higher emphasis in the region that is expected to contain the optimum of the process. The
experimenter’s team of experts identify that the most likely location for that optimum is located a G=2200, lldg=0.2,
w=0.15 and L=8000. As such they construct a set of weights that are highest at this location in the input space, and

then taper away the further the inputs are from that optimum. The figure below shows the set of 526 candidate points
that take into account the constraints in the region, where running an experiment at those locations would not yield a
desirable outcome or perhaps would not even generate any response. The red triangle indicates the identified likely
optimum for all pairwise scatterplots above the diagonal. The size of the symbols is scaled to be proportional to the
weights at each location, with largest points near the optimum and tapering away as we move to the extremes of the

input space.

Here is the process for generating NUSF designs for this problem:

1. From the FOQUS main screen, click the SDOE button. On the top left side, select Load from File, and select
the “CCSIex.csv” file from examples folder.

2. Next, by selecting View and then Plot it is possible to see the pairwise scatterplot of all of candidate points.
Note that in this file there are 6 columns - the Label column will be used to identify which of the candidates are
selected in the constructed designs. The Weights column summarizes how desirable a candidate point is by its
proximity to the anticipated optimum location.

3. Next, click on Confirm to advance to the Ensemble Aggregation Window, and the click on Non-Uniform
Space Filling to advance to the second SDOE screen, where particular choices about the design can be made.
On the second screen, the first choice for Optimality Method Selection is automatic, since the non-uniform
space filling designs only use the Maximin criterion.

The next choice is to choose the Scaling Method, where the choices are Direct and Ranked. The default is to use the
Direct scaling which translates the weights provided with a linear transformation so that they lie in the range 1 to

whatever MWR value is selected below. For this example, we will explore what difference the choice of the scaling
method makes on the resulting designs, but be begin by choosing the option for Direct scaling.

Next select the Design size, where here we have decided to construct a design with 10 runs. The choice of the
Maximum Weight Ratio or MWR for this example reflects that we wish to have a design that is still space filling
throughout the input region, but with a slightly emphasized concentration near the anticipated optimum. Hence we

will select small values that are not too far away from 1 (which represents a uniform space filling design). Because, it
is not always easy to judge the impact of the choice of MWR value, we recommend constructing several designs with
different MWR values and then comparing the results to see which value is best suited for the experiment to be run.

In this case, we select to generate 2 designs, with MWR values of 2 and 5. This should provide some variety of
designs to choose from after they have been constructed.

4. Once the choices for the design have been specified, click on the Test SDOE button to estimate the time taken
for creating the designs. For the computer on which this example was developed, if we ran 30 random starts, it
is estimated that the algorithm would take 15:08 minutes to generate the 2 designs with MWR values of 2 and
5. Note that the timing changes linearly, so using 40 random starts would take twice as long as using 20 random
starts. Recall that the choice of the number of random starts involves a trade-off between getting the designs
created quickly and the quality of the designs. For many applications, we would expect that using at lest 30
random starts would produce designs that are of sufficient quality.

5. Once the algorithm has generated the designs, the left box called Created Designs populates with the 2 designs
that we have created. Some of the key choices made by the experimenter for the designs are summarized in the
columns. The size of the design, the MWR value and the number of random starts are all noted. In addition,

228 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 64: Example NUSF2 pairwise scatterplot of the candidate set with the anticipated optimum location shown with
red triangles

8.1. Contents 229

FOQUS Documentation, Release 3.22.dev0

Fig. 65: Example NUSF2 choice of file for candidate set

Fig. 66: Example NUSF2 top of file with candidate points

230 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 67: Ex NUSF2 Choice of settings for generating NUSF designs

Fig. 68: Ex NUSF2 specification of timing to generate the requested designs.

8.1. Contents 231

FOQUS Documentation, Release 3.22.dev0

the time to create the design is also included. The criterion value is provided. Recall from the discussion in the
Basics section, that the criterion value can be compared for designs of the same size and with the same MWR
value, but should not be compared across design sizes or across different MWR values.

6. To examine each of the created designs, select View and choose the columns to be included, and click Plot. For
this example we included only the 4 input columns to keep each plot to a moderate size. Note that two plots are
created for each design. The first is the Closest Distance by Weight (CDBW) plot, and the second is the more
familiar pairwise scatterplot of the created design.

Recall that there are two portions to the CDBW plot. The lower section shows a histogram of the weights in the
candidate set. Note that the range of values goes from 1 to the MWR value selected. For the figure below, we are

looking at a design created with a MWR value of 2. The shape of the histogram shows what values were available to
be selected from. The top portion of the plot, has a vertical line for each of the design points selected (in this case 10
vertical lines for 10 design points). The location of each vertical line shows the weight for the selected design point.

This allows the user to see how much emphasis was placed on getting the larger weight values into the design.

Fig. 69: Ex NUSF2 Closest Distance by Weight (CDBW) plot for the constructed 10 run design with MWR values of
2

In looking at the location of the vertical lines in the top of the CDBW plot, we see that some locations in the input
space have been chosen across the majority of the range of the weight values. This reflects the relatively small MWR

of 2 value that was selected.

The second plot is the more familiar scatterplot of the design points. This shows the location of the 10 selected design
points in the 4 dimensional input space. The points look to cover much the same region as the overall candidate

points, but with a slight concentration of points closer to the anticipated optimum.

7. Next we consider, reproducing the same designs, but now selecting the Ranked scaling option to see how this
changes the results of the constructed design. We repeat the early steps for the SDoE module with the same file
for the candidate set, “CCSIex.csv”, and all of the choices for the design the same, except this time we choose

232 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 70: Ex NUSF2 pairwise scatterplot for the constructed 10 run design with MWR values of 2

the Scaling Method, as Ranked.

We again construct designs with MWR values of 2 and 5. The time required to generate these designs will be
approximately the same as for the other choice of scaling method.

To compare the designs, we can examine the CDBW plots for all 4 of the constructed designs. The figure below
shows the CDBW plots for all 4 designs.

To understand the differences between the choices, we note the following points. (a) Not that for the top row of
CDBW plots for those associated with the Direct scaling, the shape of the histograms for the candidate set are the
same as for the original unscaled weights provided in the candidate set. In this case, we have a skewed distribution

with very few small weights. (b) In contrast, the bottom row of CDBW plots are for the Ranked scaling, and the shape
of the histogram is quite different from what was obtained with the Direct weighting. As is typical of the the Ranked

scaling, we obtain an even histogram with nearly the same count in each bar. (c) Next when we compare the left
(MWR=2) and right (MWR=5) plots, we see that the left plots have a more evenly spread set of weights selected

across the entire range of values. For the MWR=5 plots, we see that there is a greater concentration of larger weights
that have been selected. (d) To select the design that is best suited for the goal of the experiment, it is helpful to think
about how non-uniform the spread of points should be, and how big are the gaps where no runs will be collected. The
4 sets of pairwise scatterplots can helpful to see where the gaps exist. The scatterplots are slightly harder to interpret
as the number of factors increases, but the histograms for each input can give a good idea of how the runs are spread

across the range of each input.

8.1. Contents 233

FOQUS Documentation, Release 3.22.dev0

Fig. 71: Ex NUSF2 Choice of settings for generating NUSF designs with Ranked for the Scaline Method

234 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 72: Ex NUSF2 Comparison of the CDBW plots for designs with MWR values of 2 and 5 with both Direct and
Ranked scaling

8.1. Contents 235

FOQUS Documentation, Release 3.22.dev0

Fig. 73: Ex NUSF2 Comparison of the pairwise scatterplots for designs with MWR values of 2 and 5 with both Direct
and Ranked scaling

236 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Example IRSF-1: Constructing Input-Response Space Filling maximin designs for a 2-D input space
with 1-D response

For this first Input-Response Space Filling design example, the goal is to construct a Pareto front of input-response
space-filling designs, all with 20 runs in a 2-dimensional input space based on a regular unconstrained square region
populated with a grid of candidate points, along with a single response variable. All designs on the Pareto front have

a unique balance of space filling in the input space and response space, giving the experimenter latitude to choose
which design is best for a particular situation.

The choice of how to construct the candidate set should be based on: (a) what is the precision with which each of the
inputs can be set in the experiment (the candidate set should not contain increments finer than what can be set in the
experiment), and (b) timing for generating the designs. The finer the grid that is provided in the candidate set, the
longer the search algorithm will take to run for a given number of random starts. In general, a finer grid will give

better options for the best design, but with diminishing returns after a large number of candidates have already been
provided.

As noted previously in the Basics section, in addition to specifying the candidate point input combinations, it is also
required to supply an additional column of the likely response variable values (or multiple columns for multiple

responses of interest). This column will be used to make sure that space filling is being accomplished in the response
space as well as the input space.

Fig. 74: Figure 1: Contour plot of the candidate set, with the two inputs X1 and X2 on the axes and the response Y in
color

The candidates are laid out in a regular grid with equal spacing between levels of each of X1 and X2. There is a

8.1. Contents 237

FOQUS Documentation, Release 3.22.dev0

Fig. 75: Figure 2: Plot of the candidate set, here with Y represented in the point size

238 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

single response variable of interest, Y. The relationship between the inputs X1 and X2 and the response of interest Y
can be characterized by a linear model.

A contour plot of the function that was used to generate the response values is shown in Figure 1 above. In Figure 2,
we can see a plot where the relative size of the points is proportional to the size of the response associated with that

candidate point. This second representation is helpful when the candidate points do not fall on a regular grid, or if the
relationship of the response and the inputs is not smooth.

Here is the process for generating IRSF designs for this problem:

1. From the FOQUS main screen, click the SDOE button. On the top left side, select Load Existing Set, and select
the “irsf-example1-candset.csv” file from the examples folder.

Fig. 76: Figure 3: SDOE Module First Page

2. Next, by selecting View and then Plot, it is possible to see the grid of points that will be used as the candidate
points. In this case, the range for each of the inputs, X1 and X2, has been chosen to be between 0 and 1. The range of

the response, Y, is from -5 to 21.

3. Next, click on Continue to advance to the Design Construction Window, and then click on Input-Response
Space Filling (IRSF) to advance to the second SDOE screen, where particular choices about the design can be made.
On the second screen, the first choice for Optimality Method Selection is automatic, since the input-response space

filling designs only use the Maximin criterion. We next select the Design Size, where here we have decided to
construct a design with 10 runs. The choice of design size is typically based on the budget of the experiment.

There are also choices for which columns to include in the design construction. Here we use all 3 columns for
creating the design, so the three Include? boxes for our X1, X2, and Y columns remain checked. In addition, it is

8.1. Contents 239

FOQUS Documentation, Release 3.22.dev0

Fig. 77: Figure 4: Pairwise Scatterplots of the Candidate Set

240 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 78: Figure 5: Choose Design Method on the Right-Hand Side

8.1. Contents 241

FOQUS Documentation, Release 3.22.dev0

Fig. 79: Figure 6: Generate Design Box for Making Design Selections

242 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

possible to see the range of values for each of the columns in the spreadsheet. Here the two input columns range from
0 to 1, while the Y column ranges from -4.88 to 20.86. The user can change these values if they wish to rescale the
ranges to widen or narrow them, but in general these values can be left as is. There is an automatic index column

called “_id” in the first row of the design generation box. The Type is preselected as Index, though if not needed, the
Include? could be unchecked to exclude this column from the candidate set. We will keep it as we have no other

index column in the candidate set.

Next, we must confirm that each row has the correct Type indicated. The index column has the type Index. The two
input columns X1 and X2 have type Input. The response variable Y currently has the type Input which must be

changed to Response before moving forward with creating an input-response space filling design.

4. Once the choices for the design have been specified, click on the Estimate Runtime button to estimate the time
required for creating the designs. For the computer on which this example was developed, if we ran 10 random starts,
it is estimated that the algorithm would take 2 minutes and 50 seconds to generate the designs and identify those on

the Pareto front. Note that the timing changes linearly, so using 20 random starts would take twice as long as using 10
random starts. Recall that the choice of the number of random starts involves a trade-off between getting the designs
created quickly and the quality of the designs. For many applications, we would expect that using at least 20 random
starts would produce designs that are of good quality. For this example we select to run 50 random starts, which is

projected to take 13 minutes and 10 seconds.

Fig. 80: Figure 7: Number of Random Starts

Fig. 81: Figure 8: Choices for Number of Random Starts

5. Once the algorithm has generated the designs, the left box called Created Designs populates with the Pareto front
of designs that we have created. The Pareto front will populate a single row of the Created Designs box, and will
display some useful information such as the Number of Designs found on the Pareto front, Number of Random

Starts used, and the Runtime. If another design search is run afterwards, that Pareto front will populate the next row,
and so on.

6. To examine the Pareto front and each of the designs on the Pareto front, select View. A plot of the Pareto front will
appear, with color-coded points representing the different designs on the Pareto front. Larger values on the x- and

y-axis indicate designs that have better space-filling properties in the input and response space, respectively. An ideal
design would be near the top-right corner of the plot, with very large values on both the x- and y-axis, however this is

8.1. Contents 243

FOQUS Documentation, Release 3.22.dev0

Fig. 82: Figure 9: Created Designs

rarely seen in practice. In reality, gains in space-filling in one space often come at the cost of space-filling in the other
space. So, the Pareto front gives a spectrum of designs for which each is the best design for its given weighting of

input and response space-filling. Along the ends of the Pareto front, one of the spaces is weighted much more heavily
than the other. Closer to the center of the Pareto front, the two spaces are weighted more equally. Experimenters will
need to examine many designs, with different levels of input and response space filling properties, to find the right

balance for their individual needs.

As we explained in the Basics section, a Pareto front is made up of a collection of objectively best designs for
different weightings of space-filling in the response and space-filling in the input spaces. A design that is on the

Pareto front cannot be improved along one criterion of interest (space-filling in the response or space-filling in the
input space) without worsening along the other criterion; if a design is located on the Pareto front, there exists no

other design that is the same or better in both dimensions. Thus, it may be confusing to some users that this Pareto
front below shows some pairs of designs connected by a vertical line, indicating one should outperform the other in
the vertical dimension (space-filling in the response). However, this is simply a result of rounding in the horizontal

dimension. The true values are in fact different by a small amount in space-filling in the input space.

Once the Pareto front has been examined, experimenters should further explore by clicking on one of the
color-coded design points within the plot to view that design. Once a point is selected, a pairwise scatterplot of the

chosen design will open, with the scatterplots and histograms being of the same color as the design point on the
Pareto front for ease of comparison between designs. Multiple designs can be open simultaneously.

7. To get a better understanding of the different designs located on the Pareto front, we will examine three: one from
the left end, one from the right end, and one from the middle. The three designs we will choose are Design 1 (purple),

Design 15 (red), and Design 10 (green), as shown on the Pareto front plot above.

From the values on the axes in Figure 10 for each of the three design points, we can determine, even before viewing
the individual designs, several important facts. We know that Design 1 (purple) is the best design if we want the

objectively-best space-filling in the response space, and don’t mind poor space-filling in the input space. Similarly, we
know that Design 15 (red) is the best design if we want the objectively-best space-filling in the input space, and don’t

mind poor space-filling in the response space. We also know Design 10 (green) will offer a compromise, with
moderate space-filling in both spaces. Design 10, or another compromise design along the Pareto front, is a good

choice if we hope to balance space-filling in the input and response spaces.

Note: The design with the best space-filling in the input space overall, here Design 15 (red), is the same as a regular
uniform space-filling design.

To determine how well a design fills the response space, we will look at the histogram for the response, Y, in the
bottom-right for each of the designs and see how evenly spread the values appear. If we had a two- or

higher-dimensional response space, we would examine the scatterplot(s) for the response variables for even spacing.
We can confirm that Design 1 (purple) does have the best space-filling in the response space of the three. The values

244 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 83: Figure 10: Pareto Front of Created Designs

8.1. Contents 245

FOQUS Documentation, Release 3.22.dev0

Fig. 84: Figure 11: Pairwise Scatterplot of Design 1

246 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

Fig. 85: Figure 12: Pairwise Scatterplot of Design 15

8.1. Contents 247

FOQUS Documentation, Release 3.22.dev0

Fig. 86: Figure 13: Pairwise Scatterplot of Design 10

248 Chapter 8. Sequential Design of Experiments (SDOE)

FOQUS Documentation, Release 3.22.dev0

of the response are evenly spread throughout the space, with no large gaps. By contrast, Design 15 (red) has many
holes and gaps in the response space.

Even though the criterion value for response space-filling in Design 10 (green) is less than Design 1 (purple), the
response space-filling in Design 10 seems to fill the space fairly well. The differences in criterion values provide a
useful summary of the trade-offs but it is important to also examine the scatterplots directly for a more intuitive

illustration of what these trade-offs will look like in practice.

To examine input space-filling, we will now look at the scatterplot of the input variables, X1 and X2, located in the
top-middle. If we had more than two input variables, we would look at a combination of pairwise scatterplots. It

would be a bit harder to determine how well the space-filling of a given design appeared, so in that case, we rely more
heavily on the position of the design on the Pareto front.

Here, Design 15 (red) definitely has the best input space-filling. The design points are spread apart with no large
holes or gaps, covering the entire space well. The input space-filling in Design 1 (purple) has many large holes, and

even that in Design 10 (green) has a hole or two.

With this variety of space-filling designs, plus the 12 more located on the Pareto front, it’s easy to see there are many
“best” designs for any given weighting of input and response space-filling. The Input-Response Space-Filling design
tool gives the experimenter the flexibility to consider each design on the Pareto front to find the compromise between

input and output space-filling to best fit the experimental objectives.

8. In the case of this example, we were hoping to find a design with good space-filling in both spaces. Design 10
(green) is an excellent candidate for this, though to be thorough we should also examine more designs along the

Pareto front. In particular, Designs 4, 6, 7, and 11, and even 2, 3, and 13, should be explored to see how these other
“best” designs balance space-filling uniquely in the two spaces.

8.1. Contents 249

FOQUS Documentation, Release 3.22.dev0

250 Chapter 8. Sequential Design of Experiments (SDOE)

CHAPTER

NINE

ROBUST OPTIMALITY-BASED DESIGN OF EXPERIMENTS (ODOE)

9.1 Contents

9.1.1 ODoE Overview

The FOQUS ODoE module supports several variants of optimal experimental design. This chapter presents an
overview of these variants. Subsequently, details of the ODoE graphical user interface will be discussed in the

Tutorials section.

Note: To run this version of ODoE, make sure you have the latest version of PSUADE installed (1.9.0).

ODoE Variables

Suppose a simulation model is available for this study. Let this simulation model be represented by the following
function:

𝑌 = 𝐹 (𝑋,𝑈)

which is characterized by two types of variables:

1. Design/Decision variables
• Notation: 𝑋 with dimension 𝑛𝑥

• Definition: Design variables are continuous variables that are bounded in some specific ranges. A require-
ment is that the simulation output should be a smooth function of these design variables.

2. Continuous uncertain variables
• Notation: 𝑈 with dimension 𝑛𝑢

• Definition: Continuous uncertain variables are associated with a joint probability distribution function from
which a sample can be drawn to compute the basic statistics.

251

FOQUS Documentation, Release 3.22.dev0

ODoE Objective Functions

There are a few variants of the objective functions. They can be divided into two classes: those that optimize certain
metrics associated with the posterior distributions of the uncertain variables (D-, A-, and E-optimality), and those that

optimize certain metrics associated with the prediction uncertainties (G- and I-optimality).

1. D-optimality: D-optimal methods seek to find an optimal subset of points in the candidate set (provided by
users) that minimizes the product of eigenvalues (or determinant) of the covariance matrix constructed from the
posterior distributions of the uncertain variables.

2. A-optimality: A-optimal methods seek to find an optimal subset of points in the candidate set (provided by users)
that minimizes the sum of eigenvalues of the covariance matrix constructed from the posterior distributions of
the uncertain variables.

3. E-optimality: E-optimal methods seek to find an optimal subset of points in the candidate set (provided by users)
that minimizes the maximum eigenvalue of the covariance matrix constructed from the posterior distributions of
the uncertain variables.

4. G-optimality: G-optimal methods seek to find an optimal subset of points in the candidate set (provided by
users) that minimizes the maximum prediction uncertainty (induced by the posterior distributions of the uncertain
variables) among an evaluation set.

5. I-optimality: I-optimal methods seek to find an optimal subset of points in the candidate set (provided by users)
that minimizes the mean prediction uncertainty (induced by the posterior distributions of the uncertain variables)
among an evaluation set.

These methods can be computationally intensive when the candidate set is large and/or the sought-after optimal
subset is large. FOQUS uses some global optimization algorithm in this context. Since there may exist many local

minima, most of the time it may only be possible to find a sub-optimal subset given limited computational time (that
is, exhaustive search may be computationally prohibitive).

9.1.2 Tutorials

This section walks through a couple of examples of running ODoE.

The files for these tutorials are located in: examples/tutorial_files/ODOE

The first example will use an existing candidate set and an existing evaluation set.

The second example will generate the candidate set and load an existing evaluation set.

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

Note: To run this version of ODoE, make sure you have the latest version of PSUADE installed (1.9.0).

252 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Example 1: ODoE with Existing Candidate Set

In this example, the user will provide an existing candidate set.

1. Start FOQUS and click the ‘SDoE’ icon.

Fig. 1: SDoE Main Window

2. Select the radio button Robust optimality-based DoE (ODoE)
3. Click the Browse button to Load RS Train Data, browse and load the ODoE_example.csv from the examples

folder.

First you will be prompted to specify the number of inputs in your training data.

After clicking OK the file loads and the screen will look like this:

4. Under Input Setup we need to select the type for each input. Leave X1 and X2 as Variable inputs and change
X3 and X4 to be Design inputs.

5. Click Confirm Inputs and the Simulation Ensemble Setup window will pop up to generate our Prior Sample.

6. Switch to the Sampling Scheme tab and select Monte Carlo and leave the # of Samples at 1000. Click Generate
Samples. When the samples are generated, Done! will show up right next to the button. You can visualize the
samples clicking on the Preview Samples button. Once the user is done, click the Done button so the generated
samples get saved.

9.1. Contents 253

FOQUS Documentation, Release 3.22.dev0

Fig. 2: ODoE Main Window

Fig. 3: ODoE Specify Number of Inputs

254 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 4: ODoE Load RS Train Data

Fig. 5: ODoE Input Setup

9.1. Contents 255

FOQUS Documentation, Release 3.22.dev0

Fig. 6: ODoE Simulation Ensemble Setup for Prior Sample Generation

256 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 7: ODoE Simulation Ensemble Setup for Prior Sample Generation - Sample Scheme

9.1. Contents 257

FOQUS Documentation, Release 3.22.dev0

7. Under Design Setup click on the Load Existing Candidate Set button.

Fig. 8: ODoE Load Existing Candidate Set

Browse and load the CandidateSet.csv from the examples folder. The user can select the candidate and click on
the Delete Selection button in case they want to delete the candidate set. To visualize the data, just click the
View button under the Visualize column.

8. On the right hand side of the Design Setup section, click on the Load Evaluation Set button.

Browse and load the EvaluationSet.csv file from the examples folder. Similar to the candidate set section, the user
can select the evaluation set and click on the Delete Selection button in case they want to delete the evaluation
set. To visualize the data, just click the View button under the Visualize column.

9. Click on the Confirm Design Setup button and under the Output Setup section, select MARS in the Response
Surface dropdown menu.

10. Click Validate RS button and the user will get a informative message window and the response surface validation
plot.

If the RS selected looks good, you can click the Confirm RS button. The response surface predictions on
candidates will get populated in the table on the bottom right corner under RS Predictions on Candidates. The
user can edit the mean and standard deviation columns in this table as needed.

11. Under ODoE Setup select the Method (in this case Fisher), the Optimality Criterion (in this case G-Opt),
Design Size (in this case 2) and Number of Restarts (in this case 3).

The choice of optimality criterion to use for design construction is driven by the objectives of the experimenter. If
the primary focus of the experimenter is parameter estimation, then selecting the D- or A-optimality criterion is
recommended. If the primary objective of the experimenter is precise prediction of the response of interest, then it
is best to select the G- or I-optimality criterion. In this case, the experimenter was primarily interested in response
prediction, so the G-optimal criterion was selected. Likewise, Design Size and Number of Restarts should be
selected to best serve the needs of the experimental objectives. A larger design will allow more information to

258 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 9: ODoE Load Existing Candidate Set

Fig. 10: ODoE Load Evaluation Set

9.1. Contents 259

FOQUS Documentation, Release 3.22.dev0

Fig. 11: ODoE Candidate and Evaluation Sets

Fig. 12: ODoE Output Setup - MARS

260 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 13: ODoE Response Surface Validation Message

Fig. 14: ODoE Response Surface Validation Plot

9.1. Contents 261

FOQUS Documentation, Release 3.22.dev0

Fig. 15: ODoE Response Surface Confirmed and Predictions Generated

be collected than a smaller design, but will necessitate the use of more time and other experimental resources.
The choice of design size is often dictated by the size of the experimental budget. Furthermore, the choice of
Number of Restarts involves a trade-off between the quality of the design generated and the time to generate the
design, with more restarts typically resulting in better designs. In this example, both design size and number of
restarts were selected to fit within the given budgetary and time constraints of the experimenter.

Once those three parameters are decided, click the Run ODoE button. A window with PSUADE running will
show up.

12. Once PSUADE finishes generating the optimality-based design, another window will pop up with results infor-
mation. A more thorough summary will also be saved in the ODOE_files directory as odoe_results.txt.

Example 2: ODoE Generating New Candidate Set

In this example, the user will generate a new candidate set.

1. Start FOQUS and click the ‘SDoE’ icon.

2. Select the radio button Robust optimality-based DoE (ODoE)
3. Click the Browse button to Load RS Train Data, browse and load the ODoE_example.csv from the examples

folder.

First you will be prompted to specify the number of inputs in your training data.

After clicking OK the file loads and the screen will look like this:

4. Under Input Setup we need to select the type for each input. Leave X1 and X2 as Variable inputs and change
X3 and X4 to be Design inputs.

262 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 16: ODoE PSUADE Running Window

9.1. Contents 263

FOQUS Documentation, Release 3.22.dev0

Fig. 17: ODoE Results Window

5. Click Confirm Inputs and the Simulation Ensemble Setup window will pop up to generate our Prior Sample.

6. Switch to the Sampling Scheme tab and select Monte Carlo and leave the # of Samples at 1000. Click Generate
Samples. When the samples are generated, Done! will show up right next to the button. You can visualize the
samples clicking on the Preview Samples button. Once the user is done, click the Done button so the generated
samples get saved.

7. Under Design Setup click on the Generate New Candidate Set button.

The Simulation Ensemble Setup window will pop up to generate our candidate set.

Switch to the Sampling scheme tab and select Monte Carlo and 25 samples. Click Generate Samples. When
the samples are generated, Done! will show up right next to the button. You can visualize the samples clicking
on the Preview Samples button. Once the user is done, click the Done button so the generated samples get saved.

The user can select the candidate set and click on the Delete Selection button in case they want to delete the
candidate set. To visualize the data, just click the View button under the Visualize column.

8. On the right hand side of the Design Setup section, click on the Load Evaluation Set button.

Browse and load the EvaluationSet.csv file from the examples folder. Similar to the candidate set section, the user
can select the evaluation set and click on the Delete Selection button in case they want to delete the evaluation
set. To visualize the data, just click the View button under the Visualize column.

9. Click on the Confirm Design Setup button and under the Output Setup section, select MARS in the Response
Surface dropdown menu.

10. Click Validate RS button and the user will get a informative message window and the response surface validation
plot.

If the RS selected looks good, you can click the Confirm RS button. The response surface predictions on

264 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 18: ODoE Results File

9.1. Contents 265

FOQUS Documentation, Release 3.22.dev0

Fig. 19: SDoE Main Window

266 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 20: ODoE Main Window

Fig. 21: ODoE Specify Number of Inputs

9.1. Contents 267

FOQUS Documentation, Release 3.22.dev0

Fig. 22: ODoE Load RS Train Data

Fig. 23: ODoE Input Setup

268 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 24: ODoE Simulation Ensemble Setup for Prior Sample Generation

9.1. Contents 269

FOQUS Documentation, Release 3.22.dev0

Fig. 25: ODoE Simulation Ensemble Setup for Prior Sample Generation - Sample Scheme

270 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 26: ODoE Generate New Candidate Set

candidates will get populated in the table on the bottom right corner under RS Predictions on Candidates. The
user can edit the mean and standard deviation columns in this table as needed.

11. Under ODoE Setup select the Method (in this case Fisher), the Optimality Criterion (in this case G-Opt),
Design Size (in this case 2) and Number of Restarts (in this case 3).

The choice of optimality criterion to use for design construction is driven by the objectives of the experimenter. If
the primary focus of the experimenter is parameter estimation, then selecting the D- or A-optimality criterion is
recommended. If the primary objective of the experimenter is precise prediction of the response of interest, then it
is best to select the G- or I-optimality criterion. In this case, the experimenter was primarily interested in response
prediction, so the G-optimal criterion was selected. Likewise, Design Size and Number of Restarts should be
selected to best serve the needs of the experimental objectives. A larger design will allow more information to
be collected than a smaller design, but will necessitate the use of more time and other experimental resources.
The choice of design size is often dictated by the size of the experimental budget. Furthermore, the choice of
Number of Restarts involves a trade-off between the quality of the design generated and the time to generate the
design, with more restarts typically resulting in better designs. In this example, both design size and number of
restarts were selected to fit within the given budgetary and time constraints of the experimenter.

Once those three parameters are decided, click the Run ODoE button. A window with PSUADE running will
show up.

12. Once PSUADE finishes generating the optimality-based design, another window will pop up with results infor-
mation. A more thorough summary will also be saved in the ODOE_files directory as odoe_results.txt.

9.1. Contents 271

FOQUS Documentation, Release 3.22.dev0

Fig. 27: ODoE Generate New Candidate Set - Simulation Ensemble Setup

272 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 28: ODoE Generate New Candidate Set - Sampling Scheme

9.1. Contents 273

FOQUS Documentation, Release 3.22.dev0

Fig. 29: ODoE Load Evaluation Set

Fig. 30: ODoE Candidate and Evaluation Sets

274 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 31: ODoE Output Setup - MARS

Fig. 32: ODoE Response Surface Validation Message

9.1. Contents 275

FOQUS Documentation, Release 3.22.dev0

Fig. 33: ODoE Response Surface Validation Plot

276 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 34: ODoE Response Surface Confirmed and Predictions Generated

9.1. Contents 277

FOQUS Documentation, Release 3.22.dev0

Fig. 35: ODoE PSUADE Running Window

278 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

FOQUS Documentation, Release 3.22.dev0

Fig. 36: ODoE Results Window

9.1. Contents 279

FOQUS Documentation, Release 3.22.dev0

Fig. 37: ODoE Results File

280 Chapter 9. Robust Optimality-Based Design of Experiments (ODoE)

CHAPTER

TEN

HEAT INTEGRATION

10.1 Tutorial

10.1.1 Tutorial: Heat Integration with FOQUS

The files for this tutorial are located in: examples/tutorial_files/Heat_Integration

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

Motivation:

Methanol Production involves heating and cooling of process streams at different stages of the process, mainly fresh
feed intercooling between compressors, mixed feed preheating before the reactor, intermediate cooling before flash,

and heating of products and byproducts from the flash.

As shown in the figure above, there are 2 hot streams being cooled in C1, C2, and 3 cold streams being heated in
H1,H2,H3. Clearly, there is a potential to perform heat integration among these process streams in order to minimize

total utility and energy consumption while achieving the target temperatures.

281

FOQUS Documentation, Release 3.22.dev0

Aim:

The aim of this tutorial is to implement heat integration for an Aspen Plus methanol production flowsheet, by using
the heat integration plugin within FOQUS, in order to obtain the minimum utility consumption of the process.

Procedure:

1. Firstly, a SimSinter Configuration file must be created corresponding to the Aspen Plus backup file, which
is located in examples/tutorial_files/Heat_Integration. The simulation model is available in it.
Note: Ensure that Aspen v10 is used for this example. Select the fresh feed flowrate and temperature as “in-
put variables”, and inlet, outlet temperatures of the process streams passing through all heaters and coolers
(F2,F3,RF1,RF2,RP2,RP3,B2,BY-PROD,P1,PROD), along with heat duty of each heater, cooler as “output vari-
ables”.

2. Once the SimSinter file is saved in .json format, upload it to turbine and keep the simulation name as
“MethanolHI”.

3. In the Flowsheet Window, add a node named “methanol_HI” which would contain the simulation.

4. Open the node editor for the given node, select model type as “Turbine” and model as “MethanolHI”. All the
selected input and output variables of the simulation should be visible in the GUI.

5. Add heat integration tags beside each output variable. In this case, the order of tags for heat duty and temperature
variables is as follows: Heat Duty of Heaters/Coolers: [“Block name”, “Blk_Var”, “heater”, “Q”] Where name
is the block name of each heater/cooler in the Aspen model.

Inlet/Outlet temperatures: [“Block name”, “Port_Material_In/Out”, “heater”, “T”] Where name is the block
name of the heater/cooler in the Aspen model, associated with the concerned inlet/outet stream.

NOTE: Ensure that all the variables are of the type “float” in the GUI

6. Run the flowsheet simulation node for testing once. The heat integration tags for output variables are seen in the
rightmost column of the node editor, as shown below:

7. Add another node to the flowsheet window named “HI”

282 Chapter 10. Heat Integration

FOQUS Documentation, Release 3.22.dev0

10.1. Tutorial 283

FOQUS Documentation, Release 3.22.dev0

8. Open the node editor for it, and enter the heat integration plugin. In its input variables, enter number of streams
as 5. Keep all other input values default.

9. Connect both the nodes through an edge connector.

10. Run the flowsheet simulation.

Result:

Minimum Utility Requirements: Q (cooling water) = 1.2346 GJ/hr Q (IP Steam) = 0.101 GJ/hr

284 Chapter 10. Heat Integration

CHAPTER

ELEVEN

PYOMO-FOQUS

11.1 Tutorial

11.1.1 Tutorial: Running PYOMO Optimization Model in FOQUS

Consider the following optimization problem to be solved with FOQUS using PYOMO.

min y

Subject to:

𝑦 = 𝑥1 + 𝑥2

𝑎𝑥1 + 𝑏𝑥2 ≥ 𝑐

The complete FOQUS file (Pyomo_Test_Example.foqus), with the code written, is located in:
examples/tutorial_files/PYOMO

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

Instructions

1. Open FOQUS, and under the Flowsheet Tab, create a Node.

2. Open the Node Editor, and let the Model Type be “None”.

3. Add the model parameters a, b, c as “Input Variables” within the Node Editor, with values 1, 2, 3 respectively.

4. Add x1, x2, y, converged, and optimal as “Output Variables” within the Node Editor.

Note that x1, x2 and y correspond to the optimization variable values.

converged is meant to be a binary variable that would denote whether the optimization model has converged,
by checking the solver status.

optimal is meant to be a binary variable that would denote whether the solver returns an optimal solution.

5. Under Node Script, set Script Mode to “Post”. This will ensure that the node script runs after the node simulation.
Enter the following PYOMO code for the optimization model:

1 from pyomo.environ import (Var,
2 Constraint,
3 ConcreteModel,

(continues on next page)

285

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

4 PositiveReals,
5 Objective)
6 from pyomo.opt import SolverFactory
7 import pyutilib.subprocess.GlobalData
8

9 pyutilib.subprocess.GlobalData.DEFINE_SIGNAL_HANDLERS_DEFAULT = False
10 m = ConcreteModel()
11 m.x1 = Var(within=PositiveReals)
12 m.x2 = Var(within=PositiveReals)
13 m.y = Var()
14 m.c1 = Constraint(expr=x["a"]*m.x1+x["b"]*m.x2 >= x["c"])
15 m.c2 = Constraint(expr=m.x1+m.x2 == m.y)
16 m.o = Objective(expr=m.y)
17 opt = SolverFactory("ipopt")
18 r = opt.solve(m)
19 f["x1"] = m.x1.value
20 f["x2"] = m.x2.value
21 f["y"] = m.y.value
22 f["converged"] = (str(r.solver.status) == "ok")
23 f["optimal"] = (str(r.solver.termination_condition) == "optimal")

In the above code, lines 1-6 are used to import the PYOMO package and SolverFactory function to develop the
model and solve it by accessing an appropriate solver.

A PYOMO Concrete Model is declared, defining the variables, declaring the constraints using the parameters
defined within “Input Variables” of the Node, and defining the objective function with lines 10 to 16.

Line 17 sets the solver to ipopt and line 18 sends the problem to be solved to the solver. Ipopt is a nonlinear
optimization solver.

Note: ipopt will need to be available in your environment. To install it into your conda environment you
should use the command: conda install -c conda-forge ipopt The conda install method is preferred
for Windows users.

Once the model is solved, the values of decision variables x1, x2, y are assigned to the Node Output Variables
in lines 19 to 21.

The code lines 22 and 23 check the solver status and termination condition. If the solver status is “ok”, it means
that the model has converged, and the ‘converged’ variable is assigned the value 1. Else, it is assigned the value
0, which means that the model has not converged. If the solver termination condition is “optimal”, it means that
the solver has found an optimal solution for the optimization model. Else, the solution is either feasible if the
solver status is “ok”, or infeasible altogether.

6. Click the Run button to run the python script and check the Node Output Variables section.

It should be noted that the parameter values within Node Input Variables can be changed as per user’s requirement, to
run different cases.

Note: For more information on building and solving pyomo models, refer to the pyomo documentation:
https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html

286 Chapter 11. PYOMO-FOQUS

https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html

CHAPTER

TWELVE

IDAES-FOQUS

12.1 Tutorial

12.1.1 Tutorial: Running IDAES model in FOQUS

The NETL’s Institute for the Design of Advanced Energy Systems is developing an equation-oriented framework for
simulation and optimization of energy systems. A library of unit models is available to create and solve process

flowsheets, therefore, a tutorial has been developed in FOQUS to import IDAES unit models, build a flowsheet, and
simulate it.

The case study consists of the separation of Toluene-Benzene mixture (Figure 1). First the mixture is heated to 370K,
and then separated in the Flash Tank. Consider the following process flowsheet that has been developed in FOQUS,

using IDAES :

Fig. 1: Figure 1: Heater Flash Flowsheet

Feed Conditions:
Flowrate = 0.277778 mol/s

Temperature = 353 K

Pressure = 101325 K

Benzene Mole Fraction = 0.4

Toluene Mole Fraction = 0.6

Heater Specification:

287

FOQUS Documentation, Release 3.22.dev0

Outlet Temperature (HTOUT stream) = 370 K

Flash Specification:
Heat Duty = 0 W

Pressure Drop = 0 Pa

The following steps show how to import Python, Pyomo, and IDAES libraries and models, build the flowsheet, select
input variables, and solve the simulation in FOQUS:

Instructions

1. Open FOQUS, and under the Flowsheet Tab, create a Node named “Flowsheet”.

2. Open the Node Editor and let the Model Type be “None”.

3. Add the following input variables with their corresponding values in the Node Editor: heater_inlet_molflow:
0.277778 mol/s

heater_inlet_pressure: 101325 Pa

heater_inlet_temperature: 353 K

heater_inlet_benzene_molfrac: 0.4

heater_inlet_toluene_molfrac: 0.6

heater_outlet_temperature: 370 K

flash_heat_duty: 0 W

flash_pressure_drop: 0 Pa

4. Add the following output variables in the Node Editor: heater_heat_duty W

flash_liq_molflow mol/s

flash_liq_pressure Pa

flash_liq_temperature K

flash_liq_benzene_molfrac

flash_liq_toluene_molfrac

flash_vap_molflow mol/s

flash_vap_pressure Pa

flash_vap_temperature K

flash_vap_benzene_molfrac

flash_vap_toluene_molfrac

5. As stated in previous tutorials, the FOQUS simulation node allows the user to type a python script under the Node
Script option. In this node script section, this tutorial shows how to import python libraries, Pyomo libraries,
IDAES libraries and models, build and solve the flowsheet. Note that in this example, process conditions are fixed
in order to have 0 degrees of freedom. Hence, the optimization actually gets solved as a simulation problem. A
critical step is to link the FOQUS variables (input and output) to the IDAES mathematical model, thus, setting
the inlet conditions of the process before solving the simulation problem. Finally, under Node Script, set Script
Mode to “Post”. This will ensure that the node script runs after the node simulation. Enter the following code:

288 Chapter 12. IDAES-FOQUS

FOQUS Documentation, Release 3.22.dev0

1 # Import objects from pyomo package
2 from pyomo.environ import ConcreteModel, SolverFactory,TransformationFactory, value
3

4 import pyutilib.subprocess.GlobalData
5 pyutilib.subprocess.GlobalData.DEFINE_SIGNAL_HANDLERS_DEFAULT = False
6

7 # Import the main FlowsheetBlock from IDAES. The flowsheet block will contain the␣
→˓unit model

8

9 import idaes
10 from idaes.core.flowsheet_model import FlowsheetBlock
11

12 # Import the BTX_ideal property package to create a properties block for the␣
→˓flowsheet

13 from idaes.generic_models.properties.activity_coeff_models import BTX_activity_
→˓coeff_VLE

14

15 # Import heater unit model from the model library
16 from idaes.generic_models.unit_models.heater import Heater
17

18 # Import flash unit model from the model library
19 from idaes.generic_models.unit_models.flash import Flash
20

21 # Import methods for unit model connection and flowsheet initialization
22 from pyomo.network import Arc, SequentialDecomposition
23

24 # Import idaes logger to set output levels
25 import idaes.logger as idaeslog
26

27 # Create the ConcreteModel and the FlowsheetBlock, and attach the flowsheet block␣
→˓to it.

28 m = ConcreteModel()
29

30 m.fs = FlowsheetBlock(default={"dynamic": False}) # dynamic or ss flowsheet needs␣
→˓to be specified here

31

32 # Add properties parameter block to the flowsheet with specifications
33 m.fs.properties = BTX_activity_coeff_VLE.BTXParameterBlock(default={"valid_phase":
34 ('Liq', 'Vap'),
35 "activity_coeff_model":
36 "Ideal"})
37

38 # Create an instance of the heater unit, attaching it to the flowsheet
39 # Specify that the property package to be used with the heater is the one we␣

→˓created earlier.
40 m.fs.heater = Heater(default={"property_package": m.fs.properties})
41

42 m.fs.flash = Flash(default={"property_package": m.fs.properties})
43

44 # Connect heater and flash models using an arc
45 m.fs.heater_flash_arc = Arc(source=m.fs.heater.outlet, destination=m.fs.flash.inlet)
46

47 TransformationFactory("network.expand_arcs").apply_to(m)
(continues on next page)

12.1. Tutorial 289

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

48

49 #Feed Specifications to heater
50 m.fs.heater.inlet.flow_mol.fix(x["heater_inlet_molflow"]) # mol/s
51 m.fs.heater.inlet.mole_frac_comp[0, "benzene"].fix(x["heater_inlet_benzene_molfrac

→˓"])
52 m.fs.heater.inlet.mole_frac_comp[0, "toluene"].fix(x["heater_inlet_toluene_molfrac

→˓"])
53 m.fs.heater.inlet.pressure.fix(x["heater_inlet_pressure"]) # Pa
54 m.fs.heater.inlet.temperature.fix(x["heater_inlet_temperature"]) # K
55

56 # Unit model specifications
57 m.fs.heater.outlet.temperature.fix(x["heater_outlet_temperature"]) # K
58 m.fs.flash.heat_duty.fix(x["flash_heat_duty"]) # W
59 m.fs.flash.deltaP.fix(x["flash_pressure_drop"]) # Pa
60

61 #Flowsheet Initialization
62 def function(unit):
63 unit.initialize(outlvl=1)
64

65 opt = SolverFactory('ipopt')
66 seq = SequentialDecomposition()
67 seq.options.select_tear_method = "heuristic"
68 seq.run(m, function)
69

70 # Solve the flowsheet using ipopt
71 opt = SolverFactory('ipopt')
72 solve_status = opt.solve(m)
73

74 #Assign the simulation result from IDAES model to FOQUS output values
75 f["flash_liq_molflow"] = value(m.fs.flash.liq_outlet.flow_mol[0])
76 f["flash_liq_benzene_molfrac"] = value(m.fs.flash.liq_outlet.mole_frac_comp[0,

→˓"benzene"])
77 f["flash_liq_toluene_molfrac"] = value(m.fs.flash.liq_outlet.mole_frac_comp[0,

→˓"toluene"])
78 f["flash_liq_temperature"] = value(m.fs.flash.liq_outlet.temperature[0])
79 f["flash_liq_pressure"] = value(m.fs.flash.liq_outlet.pressure[0])
80 f["flash_vap_molflow"] = value(m.fs.flash.vap_outlet.flow_mol[0])
81 f["flash_vap_benzene_molfrac"] = value(m.fs.flash.vap_outlet.mole_frac_comp[0,

→˓"benzene"])
82 f["flash_vap_toluene_molfrac"] = value(m.fs.flash.vap_outlet.mole_frac_comp[0,

→˓"toluene"])
83 f["flash_vap_temperature"] = value(m.fs.flash.vap_outlet.temperature[0])
84 f["flash_vap_pressure"] = value(m.fs.flash.vap_outlet.pressure[0])
85 f["heater_heat_duty"] = value(m.fs.heater.heat_duty[0])

Note: ipopt will need to be available in your environment. This should be available through the following
command during the generic install of IDAES in the environment: idaes get-extensions

Once the model is solved, the values of flowsheet output variables are assigned to the node output variables.

6. Click the Run button to run the python script and check the node output variables section, note that their values
should have changed.

290 Chapter 12. IDAES-FOQUS

FOQUS Documentation, Release 3.22.dev0

It should be noted that the values within Node Input Variables can be changed as per user’s requirement, to run
different cases.

Note: For more information on installing IDAES, along with building and solving IDAES models, refer to the
IDAES documentation: https://idaes-pse.readthedocs.io/en/stable/index.html

This tutorial demonstrates the capability of simulating IDAES based process models in FOQUS. However,
optimization problems can also be solved using IDAES in FOQUS, by providing the required degrees of freedom.

It is recommended that FOQUS and IDAES must be installed in the same conda environment for this example to run
successfully.

The complete FOQUS file (FOQUS_IDAES_Example.foqus), that includes the IDAES model, is located in:
examples/tutorial_files/IDAES. The examples/ directory refers to the location where the FOQUS examples

were installed, as described in Install FOQUS Examples.

12.1. Tutorial 291

https://idaes-pse.readthedocs.io/en/stable/index.html

FOQUS Documentation, Release 3.22.dev0

292 Chapter 12. IDAES-FOQUS

CHAPTER

THIRTEEN

FOQUS-MATLAB

13.1 Contents

13.1.1 MATLAB-FOQUS interface

Introduction

MATLAB® is a proprietary interpreted programming language developed by MathWorks, and is highly used in many
science and engineering areas for numeric computing. Some important advantages of MATLAB include its ease of
use and the large number of the available high-level functions for many applications. In this way, the motivation to
develop an interface between MATLAB and FOQUS is intended to facilitate to FOQUS users the use of MATLAB
models and its integration with other FOQUS supported modeling environments such as Aspen Plus and gPROMS,

enabling the possibility to build highly complex cross-platform models which can then directly leverage FOQUS
capabilities for advanced analysis.

Two different but equivalent approaches were implemented for interfacing MATLAB and FOQUS, which can be used
depending on the user needs. These two approaches are described below:

Warning: The setup steps for the two approaches shown below were tested using MATLAB R2019b
and Python 3.6, however they must work for other MATLAB and Python versions.

Option 1: MATLAB - FOQUS direct

This approach is best suited for MATLAB simulations that are not computationally intensive, although it can be used
in those situations as well. This approach is fully integrated with FOQUS, and it is implemented in a simple way to

enable running MATLAB simulations within FOQUS.

To be able to call MATLAB models from FOQUS through the FOQUS plugin implementation, it is required to setup
properly the MATLAB engine API for Python, which is available for MATLAB-version R2014b or greater.

MATLAB supports Python versions 2.7, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. Further details regarding specific MATLAB
and Python versions compatibilities are given here.

To install the MATLAB engine package follows the steps below, which require compatible versions of Python and
MATLAB already installed, and also a valid MATLAB license. The steps below assume that the Python distribution

installed is Anaconda, but they also work for any other Python distribution.

1. Find out the MATLAB installation directory. To do this, just launch a new MATLAB session and type the
instruction below:

matlabroot

293

https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/support/sysreq/files/python-compatibility.pdf

FOQUS Documentation, Release 3.22.dev0

2. Open an Anaconda command prompt. (Optional: activate the conda python environment if you are using a
specific python environment for the installation).

3. Based on your operating system, move to the MATLAB installation folder, and then to the location that contains
the python engine setup file. To do this, just type the instruction below:

cd %matlabroot%\extern\engines\python

Note: %matlabroot% is the MATLAB installation folder from step 1.

Now, if you list all files in this directory, you must see a setup.py file there.

4. Install the MATLAB engine package by typing the code below:

python setup.py build --build-base="C:\matlabpybuild" install

Note: C:\matlabpybuild is a folder to build the Python package. Users can use any folder that they have
access to.

If the MATLAB engine package was installed correctly, a similar message to the Figure 1 must be seen on the
terminal window.

Fig. 1: Figure 1 - Terminal window message after installing the MATLAB engine package

Now, to run MATLAB models within FOQUS follow the steps below:

1. Create a node simulation in the FOQUS flowsheet editor and define all input and output variables of the model.

2. Create a MATLAB function calling the model.

294 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

3. Call FOQUS plugin named “matlab_fs” to start a new MATLAB session. This can be done in the Model section
at node editor. In “Type” option choose “plugin”, and in “Model” option choose “matlab_fs”.

4. Connect to the current MATLAB session from the node script.

5. Create a MATLAB array object in the FOQUS node script containing the input parameters for the MATLAB
model.

6. Call the MATLAB function/model.

7. Retrieve the outputs from the MATLAB function to FOQUS output variables.

8. Terminate MATLAB session.

Further details on how to use this option to interface MATLAB-FOQUS are given in the example presented in the
tutorial 1.

Option 2: MATLAB script implementation

This approach is best suited for MATLAB simulations that are computationally intensive, and FOQUS is used for
data analysis and surrogate modeling.

In this option, the MATLAB-FOQUS interface runs MATLAB models directly in the MATLAB environment, but
making the results/outputs fully compatible with FOQUS modules. This is automatically achieved through a

MATLAB script foqus_matlab_script.m provided with the FOQUS distribution, which can be executed directly
in MATLAB. To use the script, it is necessary to define the inputs for MATLAB models in the same order as were

defined in the FOQUS flowsheet.

The MATLAB script takes three inputs: 1) the MATLAB function containing the model, 2) the name of the PSUADE
file containing the samples space for the model, which needs to be created previously in the uncertainty module in

FOQUS, 3) the path where the MATLAB function and PSUADE file are located.

The MATLAB script uses some functions available in FOQUS base code to handle PSUADE full file format and
sample data objects, and these functions are written in Python. For this reason, before using the script, it is necessary

to configure MATLAB to execute Python modules. The steps for this configuration are given below:

1. Find out where Python executable is located. To do this, open an Anaconda command prompt or a Terminal and
type the code below:

python -c "import sys; print(sys.executable)"

2. Open a new MATLAB session and type the code below:

pyenv('Version', '%pythonroot%python.exe')

Note: %pythonroot% is the Python executable folder found in step 1. You can also verify if the Python config
was stored in MATLAB by typing again pyenv, and then you must see the previous message again.

Warning: pyenv was first introduced in MATLAB R2019b. In older MATLAB versions, you need to use
pyversion, as shown below:

pyversion('%pythonroot%python.exe')

3. Now, type the code line below:

13.1. Contents 295

FOQUS Documentation, Release 3.22.dev0

py.numpy.arange(1)

Note: If you do not get errors, then the Python configuration is ready and skip the following steps. If you got
this, or any similar error: Unable to resolve the name py.numpy.arange, then you need to verify that
the folder containing the Python binary files is included in the system environment variables, for this, go to step
4.

4. In MATLAB, type the code below to see all folders that are added to the system path:

getenv('PATH')

Note: Check if %pythonroot%\Library\bin is already in the path, if not, follows step 5.

5. In MATLAB, type the code below:

setenv('PATH', ['%pythonroot%\Library\bin', pathsep, getenv('PATH')])

Note: Replace %pythonroot% with the Python executable folder found in step 1. You can also add manually
the folder containing the Python binary files to the system environment variables, but this will depend on the
specific operating system.

6. Type again the code below:

py.numpy.arange(1)

Note: This time everything should work fine without errors.

After completing the configuration part to execute Python modules within MATLAB, the general steps to interfacing
MATLAB and FOQUS are as follows:

1. Create a node simulation in the FOQUS flowsheet editor and define all input and output variables of the model.

2. Create a new ensemble for the sample space using the uncertainty quantification module in FOQUS.

3. Export the UQ Ensemble to PSUADE full file format.

4. Create a MATLAB function calling the model (it is necessary to define the inputs for the MATLAB function in
the same order as were defined in the FOQUS flowsheet in step 1).

5. Execute the MATLAB script foqus_matlab_script.m provided with FOQUS calling the MATLAB model
function and the PSUADE file.

6. A new csv file outputs.csv fully compatible with FOQUS and containing the results from MATLAB simula-
tions for the entire sample space is created.

7. Now, the outputs.csv file can be imported in FOQUS to use the different FOQUS capabilities for subsequent
analysis.

Further details on how to use this option to interface MATLAB-FOQUS are given in the example presented in the
tutorial 2.

296 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

13.1.2 MATLAB-FOQUS interface - tutorials

Problem Statement: Steady-State Continuous Stirred Tank Reactor (CSTR)

This example solves a non-linear system of equations which describes a mathematical model for a Continuous Stirred
Tank Reactor (CSTR) at steady state. The CSTR is cooled with a cooling coil, and a simple exothermic reaction takes
place inside the reactor (see Figure 1). Model main assumptions: 1) the reactant is perfectly mixed, and 2) the volume,
heat capacities and densities are constants. Further details regarding the model are given in Vojtesek and Dostal, 2011.

Source: Jiri Vojtesek and Petr Dostal. Use of MATLAB Environment for Simulation and Control of CSTR.
International Journal of Mathematics and Computers in Simulation, 6(5), 2011.

Fig. 2: Figure 1 - Representation of a CSTR with exothermic reaction

The CSTR model in steady-state is represented by the following non-linear system of equations, which was obtained
from mass and energy balances of the reactant and cooling.

a1 · (T0 − T) + a2 · k1 · cA + a3 · qc ·
(︁

1 − e
a4
qc

)︁
· (Tc0 − T) = 0

a1 · (cA0 − cA) − k1 · cA = 0

k1 = k0 · e
−E
R·T

q0 = q

qc0 = qc

where a1−4 are constants calculated as follows:

a1 =
q

V
; a2 =

−∆H

𝜌 · cp
; a3 =

𝜌c · cpc
𝜌 · cp · V

; a4 =
−ha

𝜌c · cpc

The fixed parameters of the system are given below.

Parameter Symbol [Unit] Value
Reactor’s volume V [l] 100
Reaction rate constant k0 [min−1] 7.2e10
Activation energy divided by R E/R [K] 1e4
Reactant’s feed temperature T0 [K] 350
Inlet coolant temperature Tc0 [K] 350
Reaction heat ∆H [cal · mol−1] -2e5
Specific heat of the reactant cp [cal · g−1 · K−1] 1
Specific heat of the cooling cpc [cal · g−1 · K−1] 1
Density of the reactant 𝜌 [g · l−1] 1e3
Density of the cooling 𝜌c [g · l−1] 1e3
Feed concentration cA0 [mol · l−1] 1
Heat transfer coefficient ha [cal · min−1 · K−1] 7e5
Volumetric flow rate of reactant q0 [l · min−1] 100
Volumetric flow rate of cooling qc0 [l · min−1] 80

The variables in the system of equations are described below:

13.1. Contents 297

FOQUS Documentation, Release 3.22.dev0

Variable Symbol [Unit]
Final reactant concentration cA [mol · l−1]
Volumetric flow rate of products q [l · min−1]
Volumetric flow rate of cooling qc [l · min−1]
Product temperature T [K]
Reaction rate k1 [min−1]
Conversion XA [−]

The conversion of reactant A is defined as:

XA =
cA0 − cA

cA0

Tutorial 1: MATLAB - FOQUS direct

Step 1: Flowsheet Setup - create a node simulation in the FOQUS flowsheet editor, and name it
“CSTR_Steady_State”.

Fig. 3: Figure 2 - Flowsheet Setup

Step 2: Define all input and output variables of the model as described in Figures 3 and 4.

Step 3: Create a MATLAB function solving the non-linear system of equations presented above. The MATLAB

298 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

Fig. 4: Figure 3 - Input Variables

13.1. Contents 299

FOQUS Documentation, Release 3.22.dev0

Fig. 5: Figure 4 - Output Variables

300 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

function file (along with the FOQUS file for this example) can be found in the folder:
examples/tutorial_files/MATLAB-FOQUS/Tutorial_1

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

Step 4: Load FOQUS plugin named “matlab_fs” in the simulation node as shown Figure 5. In the node editor, under
“Type” option, choose “plugin”, and under “Model” option choose “matlab_fs”.

Fig. 6: Figure 5 - FOQUS plugin for MATLAB-FOQUS interface

Step 5: In the Node Script tab write the code as shown in Figure 6.

Note: The code shown in Figure 6 is intended to: 1) connect to the current MATLAB session, 2) create a MATLAB
array object containing the input parameters for the MATLAB model, 3) Call the MATLAB function/model, and 4)

Retrieve the outputs from the MATLAB function to FOQUS output variables.

• The code is below:

1 # Import the Matlab Engine
2 import matlab.engine
3

4 # Directory with the Matlab function
5 MATLAB_DIR = "C:\\Users\\yancycd\\MATLAB-FOQUS"
6

7 # Create a matlab engine object and connect to the opened matlab session
8 eng = matlab.engine.connect_matlab('MatlabEngine')
9

10 # Add current directory to Matlab path
11 eng.addpath(MATLAB_DIR)
12

13 # Create a matlab array object with input parameters
14 inputs = matlab.double([x["CA0"],x["cp"],x["cpc"],
15 x["delH_neg"],x["E_R"],
16 x["ha"],x["k0"],x["q0"],

(continues on next page)

13.1. Contents 301

FOQUS Documentation, Release 3.22.dev0

Fig. 7: Figure 6 - Node Script Code

302 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

(continued from previous page)

17 x["qc0"],x["rho"],x["rho_c"],
18 x["T0"], x["TC0"],x["V"]])
19

20 # Call the Matlab function
21 outputs = eng.CSTR_Steady_State(inputs, nargout=1)
22

23 # Retrieve outputs to Foqus
24 f["a1"] = outputs[0][0]
25 f["CA"] = outputs[0][1]
26 f["k1"] = outputs[0][2]
27 f["q"] = outputs[0][3]
28 f["qc"] = outputs[0][4]
29 f["T"] = outputs[0][5]
30 f["XA"] = outputs[0][6]

Step 6: Run the node simulation to test if the simulation is working properly.

Step 7: Under the uncertainty tab in FOQUS, select Add New option to generate a new simulation ensemble. Select
Use Flowsheet option. Fix all variables except the volume, which will be a variable with bounds 50-150 l. Select
Latin Hypercube sampling method with 100 samples, and then generate the samples. Figure 7 represents the

simulation ensemble generation.

Fig. 8: Figure 7 - Ensemble Generation

Step 8: Launch the simulations. Figure 8 represents the simulation results.

Now, plotting the conversion vs the reactor’s volume, a similar figure to Figure 9 must be obtained.

13.1. Contents 303

FOQUS Documentation, Release 3.22.dev0

Fig. 9: Figure 8 - Ensemble Results

Fig. 10: Figure 9 - Conversion of Reactant A vs Reactor’s Volume

304 Chapter 13. FOQUS-MATLAB

FOQUS Documentation, Release 3.22.dev0

Tutorial 2: MATLAB script implementation

Step 1: Follow steps 1-3 from the Tutorial 1: MATLAB - FOQUS direct section. Users need to take care when
defining the MATLAB function for the model in step 3 as it is necessary to define the MATLAB function inputs in

the same order as were defined in the FOQUS flowsheet.

Step 2: Follow step 6 from the Tutorial 1: MATLAB - FOQUS direct section to generate a new simulation
ensemble.

Step 3: Select the new generated UQ_Ensemble and click on Save Selected to save the ensemble as a PSUADE
file. Choose a folder to save the file and name it as data.dat.

Step 4: Create a new MATLAB script to call the matlab_foqus_script.m file (which is distributed with FOQUS
and can be found in examples/tutorial_files/MATLAB-FOQUS/Tutorial_2), and pass to it the MATLAB

function containing the model. Below is an example of the code that needs to be executed. In
examples/tutorial_files/MATLAB-FOQUS/Tutorial_2 you can find a MATLAB file name

example_2_matlab_foqus.m with the code, and you can simply execute it:

1 % This is the path where the MATLAB model, the "matlab_foqus_script.m" file␣
→˓and the PSUADE file "data.dat" are located

2 path = "C:\Users\yancycd\MATLAB-FOQUS\";
3 % This is the PSUADE file name
4 PsuadFileName = 'data.dat';
5 % This is the MATLAB function name that contains the model
6 MatlabFunctionName = @(x) CSTR_Steady_State(x);
7 % Call the "matlab_foqus_script.m" file
8 matlab_foqus_script(MatlabFunctionName, PsuadFileName, path)

Note: After executing the code above, a new outputs.csv is created with the sample results from MATLAB. This
is a file fully compatible with FOQUS.

Step 5: Under the uncertainty module, click on Load from File. Then choose .csv format file option and select
the outputs.csv file created in the previous step. A new window will ask you the number of inputs that contain the

outputs.csv file (see Figure 10), for this example is 14.

Fig. 11: Figure 10 - Number of Inputs in the Outputs File

Step 6: Now, you have a new ensemble named “output.csv” with all input and outputs variables (see Figure 11),
which can be used for other advanced analysis in the uncertainty module or any other FOQUS module.

If you plot the conversion vs the reactor’s volume, you should get the Figure 9.

13.1. Contents 305

FOQUS Documentation, Release 3.22.dev0

Fig. 12: Figure 11 - New Ensemble with MATLAB Results

306 Chapter 13. FOQUS-MATLAB

CHAPTER

FOURTEEN

SIMULATION STANDARD INTERFACE (SIMSINTER)

14.1 Contents

14.1.1 SimSinter Configuration

SimSinter is the standard interface library that FOQUS and Turbine use to drive the target simulation software.

SimSinter currently supports:

• AspenPlus (versions 8, 9, and 10)

• Aspen Custom Modeler (ACM) (versions 8, 9, and 10)

• gPROMS

• Microsoft Excel

SimSinter is used to: (1) open the simulator, (2) initialize the simulation, (3) set variables in the simulation, (4) run
the simulation, and (5) get resulting output variables from the simulation.

To drive a particular simulation, SimSinter must be told which input variables to set and which output variables to
read when the simulation is finished (there are generally far too many variables in a simulation to set and read them
all). Each simulation must have a “Sinter Config File” which records this information. FOQUS keeps the simulation
file and the “Sinter Config File” together and sends them to the Turbine gateway when a simulation run is requested.

The configuration is simplified by a GUI included with the SimSinter distribution called, “SinterConfigGUI.”
FOQUS can launch the SinterConfigGUI on simulations that have not been configured. To run the

“SinterConfigGUI” the user must have:

1. SimSinter distribution installed. SimSinter is installed by the FOQUS bundle installer.

2. The simulation file the user wants to configure. For example, if the user has an Aspen Custom Modeler simulation
called BFB.acmf, that file must be on the user’s computer, and the user should know its location.

3. The application used to execute the simulation file. For example, if the user wants to configure an Aspen Custom
Modeler simulation called BFB.acmf, Aspen Custom Modeler must be installed on the user’s machine.

The rest of this section details two step-by-step tutorials on configuring a simulation with “SinterConfigGUI.” The
first simulation is an Aspen Custom Modeler simulation and the second, Aspen Plus. Please also see the D-RM
Builder tutorials for configuring dynamic ACM models. For more details on SimSinter or a tutorial on how to

configure a Microsoft Excel file, please see the “SimSinter Technical Manual,” which is included in the FOQUS
distribution. The default location is at C:Program Files (x86)foqusfoqusdoc. It is also available on the CCSI website.

307

FOQUS Documentation, Release 3.22.dev0

14.1.2 Tutorial

Tutorial 1: Aspen Custom Modeler (ACM) Configuration

The files (both the ACM and the JSON files) for this tutorial are located in:
examples/test_files/Optimization/Model_Files

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. The “SinterConfigGUI” can be launched from FOQUS, via the Create/Edit button found in Session→
Add/Update Model to Turbine or “SinterConfigGUI” may be run on its own by selecting SimSinter → Sin-
terConfigGUI from the Windows Start menu.

2. The splash window displays, as shown in Figure SinterConfigGUI Splash Screen. The user may click the splash
screen to proceed, or wait ten seconds for it to close automatically.

Fig. 1: SinterConfigGUI Splash Screen

3. The SinterConfigGUI Open Simulation window displays (Figure SinterConfigGUI Open Simulation Window). If
“SinterConfigGUI” was opened from FOQUS, the filename text box already contains the correct file. To proceed
immediately click Open File and Configure Variables or click Browse to search for the file. For this tutorial, the
ACM model (BFBv6.2.acmf) for a bubbling fluidized bed adsorber (located in the examples/test_files/
Optimization/Model_Files folder) is selected. Once the file is selected, click Open File and Configure
Variables. The user can open a fresh ACM simulation (.acmf file) or an existing SimSinter configuration file.
For this example, open a fresh simulation.

308 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Note: Opening the simulation may take a few minutes depending on how quickly Aspen Custom Modeler can
be opened.

Fig. 2: SinterConfigGUI Open Simulation Window

4. Aspen Custom Modeler starts in the background. This is so the user can observe things about the simulation
while working on the configuration file.

5. The SinterConfigGUI Simulation Meta-Data window displays. (Figure SinterConfigGUI Simulation Meta-Data
Page Save Name Text Box). The first and most important piece of metadata is SimSinter Save Location at the top
of the window. This is where the sinter configuration file is saved. The system attempts to locate a reasonable file
location and file name; however, the user must confirm the correct file location, since it automatically overwrites
whatever file name currently exists.

6. Continue to complete the remaining fields and then click Next (Figure SinterConfigGUI Simulation Meta-Data
Page with Data Completed).

7. In the SinterConfigGUI Variable Configuration Page, (Figure SinterConfigGUI Variable Configuration Page
before Input) notice that the ACM Selected Input Variables: TimeSeries, Snapshot, RunMode, printlevel and
homotopy are already included in the input variables. TimeSeries and Snapshot are for dynamic simulations.
RunMode can be either “Steady State” or “Dynamic”. The Dynamic mode requires a dynamic ACM model.
For this simulation, the RunMode is Steady State. The homotopy variable can be set to “1” so that homotopy
is on by default. Notice that the Dynamic column (the first column) in each row contains a checkbox, enabling
the user to select if the input variable in the row is a dynamic variable. Also notice that a Variable Type search
box is on the left. This search is exactly the same as Variable Find on the Tools menu in Aspen Custom Modeler.
Please refer to the ACM documentation for details on search patterns.

14.1. Contents 309

FOQUS Documentation, Release 3.22.dev0

Fig. 3: SinterConfigGUI Simulation Meta-Data Page Save Name Text Box

310 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 4: SinterConfigGUI Simulation Meta-Data Page with Data Completed

14.1. Contents 311

FOQUS Documentation, Release 3.22.dev0

Fig. 5: SinterConfigGUI Variable Configuration Page before Input

312 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

8. A search for everything in the “BFBAdsT” block has been selected. The following Search in Progress dialog is
displayed (Figure Search in Progress Bar Page). Sometimes large searches take a while.

Fig. 6: Search in Progress Bar Page

9. First, select the “BFBadsT.A1” scalar variable in the Selected Path field (Figure SinterConfigGUI Variable
Configuration Page BFBadsT.A1 Selected).

10. If the user double-clicks, presses Enter, or clicks Preview or Lookup, information displays in the Preview Vari-
able section (Figure SinterConfigGUI Variable Configuration Page BFBadsT.A1 Preview). Here, the user can
verify the variable choices.

11. “BFBadsT.A1” is the correct variable; therefore, click Make Input. Information displays in the Selected Input
Variables section (Figure SinterConfigGUI Variable Configuration Page BFBadsT.A1 Made Input).

12. Change the variable name from “BFBadsT.A1” to something more descriptive (e.g., “WaterA”). Set Name, De-
scription and Min/Max as shown in Figure SinterConfigGUI Variable Configuration Page BFBadsT.A1 Change
Name.

13. One input variable is now displayed (Figure SinterConfigGUI Variable Configuration Page Vector Preview). At
least one output variable is required. In this example, the vector of calculated bubble sizes is wanted. Scroll
down under Search and select “BFBadsT.db.Value,” “BFBadsT.db.Value(0),” “BFBadsT.db.Value(1),” etc. If a
name with a number in parenthesis at the end is selected, it is a specific entry in the vector. If a basic name is
selected (“BFBadsT.db.Value”), the entire vector is displayed. Select the whole vector and click Preview.

14. Click Make Output if the variable the user wants is selected. Notice that this variable has a unit “m” (Figure
SinterConfigGUI Variable Configuration Page Vector As Output).

15. Change the Name of the variable to “Diameter.” Bubble size is measured in meters; however, meters should
be converted to millimeters (mm). Now, the output from the simulation should present bubble diameter in mm
(Figure SinterConfigGUI Variable Configuration Page Output Change Units). Internal to the simulation, the unit
remains “m.”

16. To add a single item in a vector, select “BFBadsT.Ar.Value(1)” and click Make Input (See Figure SinterCon-
figGUI Variable Configuration Page Removal Demo). To remove item that was just added, select it and click
Remove Variable.

17. Select the correct variable vector “BFBadsT.Ar.Value” and make it an input (Figure SinterConfigGUI Variable
Configuration Page Read Input). Notice that a Default or Min/Max cannot be set in the GUI for a vector. The
correct defaults (from the simulation) are set automatically. To change the Min/Max values, the user must edit
the JSON file in a text editor.

18. Click Next to display the SinterConfigGUI Vector Default Initialization window as shown in Figure SinterCon-
figGUI Vector Default Initialization Input Page. Since the input variable “Value” is a vector, its default values
can be modified in the window. In this case there is no need to change the values.

14.1. Contents 313

FOQUS Documentation, Release 3.22.dev0

Fig. 7: SinterConfigGUI Variable Configuration Page BFBadsT.A1 Selected

314 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 8: SinterConfigGUI Variable Configuration Page BFBadsT.A1 Preview

14.1. Contents 315

FOQUS Documentation, Release 3.22.dev0

Fig. 9: SinterConfigGUI Variable Configuration Page BFBadsT.A1 Made Input

316 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 10: SinterConfigGUI Variable Configuration Page BFBadsT.A1 Change Name

14.1. Contents 317

FOQUS Documentation, Release 3.22.dev0

Fig. 11: SinterConfigGUI Variable Configuration Page Vector Preview

318 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 12: SinterConfigGUI Variable Configuration Page Vector As Output

14.1. Contents 319

FOQUS Documentation, Release 3.22.dev0

Fig. 13: SinterConfigGUI Variable Configuration Page Output Change Units

320 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 14: SinterConfigGUI Variable Configuration Page Removal Demo

14.1. Contents 321

FOQUS Documentation, Release 3.22.dev0

Fig. 15: SinterConfigGUI Variable Configuration Page Read Input

322 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 16: SinterConfigGUI Vector Default Initialization Input Page

14.1. Contents 323

FOQUS Documentation, Release 3.22.dev0

19. The simulation is now setup. Save the configuration file by clicking Finish. The file is saved to the location
specified on the SinterConfigGUI Simulation Meta-Data page. Clicking Finish will close the SinterConfigGUI,
but NOT Aspen Custom Modeler. The user must close ACM manually.

20. If “SinterConfigGUI” was launched from FOQUS, the path to the configuration file is automatically passed to
FOQUS. The next step in FOQUS is to click OK in the Add/Update Turbine Model window. FOQUS may then
be used to upload it to TurbineLite or AWS FOQUS Cloud. If “SinterConfigGUI” was not launched from FOQUS
(e.g., it was launched from the Start menu), the configuration file name must be entered in FOQUS manually.

Tutorial 2: Aspen Plus Configuration

The files (both the Aspen Plus file and the JSON file) for this tutorial are located in:
examples/tutorial_files/SimSinter/Tutorial_2

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. The initial steps for opening a simulation and entering metadata for an Aspen Plus simulation are similar to ACM.
Refer to the SimSinter ACM tutorial Tutorial 1: Aspen Custom Modeler (ACM) Configuration. In this tutorial,
a flash model “Flash_Example.bkp” (located in the above-mentioned folder) is used as an example. Open the
Aspen Plus file and enter the metadata as shown in Figure SinterConfigGUI Simulation Meta-Data with Data
Completed.

Fig. 17: SinterConfigGUI Simulation Meta-Data with Data Completed

324 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

2. The SinterConfigGUI Variable Configuration Page displays as illustrated in Figure SinterConfigGUI Variable
Configuration Page Empty Variables. Aspen Plus has no settings, so there are no setting variables in the input
section. Unlike ACM, AspenPlus displays the Variable Tree on the left side, so the user can explore the tree as
is done in Aspen Plus Tools → Variable Explorer. Unfortunately, searching is not possible.

Fig. 18: SinterConfigGUI Variable Configuration Page Empty Variables

3. Variable Tree nodes can be expanded for searching (Figure SinterConfigGUI Variable Configuration Page Ex-
panded Aspen Plus Variable Tree).

4. The user can type the node address directly into the Selected Path field (this is useful for copy/paste from Aspen
Plus’ Variable Explorer) (Figure SinterConfigGUI Variable Configuration Page Aspen Plus Variable Selected).
Click Lookup or Preview (which automatically causes the tree to expand and selects selected variables in the
Variable Tree).

5. To make the temperature of the Flash chamber an Input Variable, click Make Input. Additionally, the user can
Name the variable, fix the Description, and enter the Min/Max fields by clicking on the appropriate text and
entering it.

6. Select an Output Variable, Preview it, and click Make Output. Next, update the fields as with the Input
Variable to give a better Name and Description.

7. The task is complete. Save it by clicking Save or CTRL+S. The file is saved to the location specified in the
SinterConfigGUI Simulation Meta-Data page. If the user wishes to save a copy under a different name, navigate
back to the SinterConfigGUI Simulation Meta-Data page and change the name.

14.1. Contents 325

FOQUS Documentation, Release 3.22.dev0

Fig. 19: SinterConfigGUI Variable Configuration Page Expanded Aspen Plus Variable Tree

326 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 20: SinterConfigGUI Variable Configuration Page Aspen Plus Variable Selected

14.1. Contents 327

FOQUS Documentation, Release 3.22.dev0

Fig. 21: SinterConfigGUI Variable Configuration Page Input Variable

328 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 22: SinterConfigGUI Variable Configuration Page Output Variable

14.1. Contents 329

FOQUS Documentation, Release 3.22.dev0

Tutorial 3: Microsoft Excel Configuration

The files (both the Excel and the JSON files) for this tutorial are located in:
examples/tutorial_files/SimSinter/Tutorial_3

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

1. The “SinterConfigGUI” can be launched from FOQUS, via the Create/Edit button found in File→ Add/Update
Model to Turbine or “SinterConfigGUI” may be run on its own by selecting CCSI Tools → FOQUS → Sin-
terConfigGUI from the Start menu.

2. The splash window displays, as shown in Figure SinterConfigGUI Splash Screen. The user may click the splash
screen to proceed, or wait 10 seconds for it to close automatically.

Fig. 23: SinterConfigGUI Splash Screen

3. The SinterConfigGUI Open Simulation window displays (Figure SinterConfigGUI Open Simulation Window). If
“SinterConfigGUI” was opened from FOQUS, the filename text box already contains the correct file. To proceed
immediately click Open File and Configure Variables or click Browse to search for the file. For this tutorial,
a fresh copy of the BMI (body mass index) test is opened (exceltest.xlsm). It is located in:

examples/tutorial_files/SimSinter/Tutorial_3

4. Microsoft Excel starts in the background. This is so the user can observe things about the worksheet while
working on the configuration file.

5. In the “SinterConfigGUI” the SinterConfigGUI Simulation Meta-Data page is now displayed (Figure SinterCon-
figGUI Simulation Meta-Data Save Text Box). The first and most important piece of metadata is Save Location

330 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 24: SinterConfigGUI Open Simulation Screen

14.1. Contents 331

FOQUS Documentation, Release 3.22.dev0

at the top of the window. This is where the sinter configuration file is saved. The system attempts to locate a rea-
sonable file location and file name; however, the user must confirm the correct file location, since it automatically
overwrites whatever filename currently exists.

Fig. 25: SinterConfigGUI Simulation Meta-Data Save Text Box

6. Continue to complete in the remaining fields and click Next.
7. In the SinterConfigGUI Variable Configuration Page, (Figure SinterConfigGUI Variable Configuration Page

before Input) notice that the Excel setting variable macro is already included in the Selected Input Variables.
If the Excel spreadsheet has a macro that should be run after SimSinter sets the inputs, but before SimSinter
gets the outputs, enter the macros name in the Default text box. If the Default box is left blank, no macro is
run (unless a name is supplied in the input variables when running the simulation). If the user needs to run
multiple macros (e.g., Macro1 and Macro2), we recommend that the user create a “Master” macro in the Excel
file that automatically runs Macro1 and Macro2 using the Call statement. Let’s suppose that the “Master” macro
is named MasterMacro. Then, in SimSinter, the user will need to type in MasterMacro in the Default text box
under the Excel setting variable macro.

8. The Excel simulation has the same Variable Tree structure as Aspen Plus, as shown in (Figure SinterConfigGUI
Variable Configuration Page Selecting a Variable from the Excel Variable Tree). Only the variables in the active
section of the Excel spreadsheet appear in the Variable Tree. If, for some reason, a cell does not appear the in
tree, the user may manually enter the cell into the Selected Path text box. In this case, select the “heightC4”
variable.

Note: Row is first in the Variable Tree, yet column is first in the Path.

9. If the user double-clicks, presses enter, clicks Preview, or clicks Lookup, the variable will be displayed in the
Preview Variable frame. Click the Make Input button to make the variable an input variable. Now the variable
is in the Selected Input Variables section, and its meta-data may be edited (Figure SinterConfigGUI Variable
Configuration Page Description “Joe’s Height”).

332 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 26: SinterConfigGUI Variable Configuration Page before Input

14.1. Contents 333

FOQUS Documentation, Release 3.22.dev0

Fig. 27: SinterConfigGUI Variable Configuration Page Selecting a Variable from the Excel Variable Tree

10. Enter an output variable (such as, “BMIC3”), by selecting the variables in the Variable Tree, clicking Preview,
and then clicking Make Output (Figure SinterConfigGUI Variable Configuration Page Selecting Excel Output
Variables).

11. The simulation is now set up. To save the configuration file, click Finish or press CTRL+S. The file is saved to
the location that was set on the SinterConfigGUI Simulation Meta-Data window. A user can save a copy under a
different name, by navigating back to the SinterConfigGUI Simulation Meta-Data window using Back, and then
changing the name. This creates a second version of the file.

Tutorial 4: gPROMS Configuration

gPROMS is significantly different from the other simulators SimSinter supports, and the workflow is also
significantly different. If you plan to use gPROMS simulations with FOQUS, the CCSI team strongly encourages you

to read the [SimSinter gPROMS Technical Manual](https:
//github.com/CCSI-Toolset/SimSinter/blob/master/docs/SimSinter%20gPROMS%20Technical%20Manual.pdf).

Unlike Aspen, changes must be made to the gPROMS simulation process in order to work with SimSinter. Therefore,
this section consists of a series of tutorials for every step of configuring gPROMS and SimSinter to work together. All
the tutorials are required in order to have a gPROMS simulation be runnable with SimSinter. They are divided up to

make later reference easier.

The files for this tutorial are located in: examples/tutorial_files/SimSinter/Tutorial_4

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as described in
Install FOQUS Examples.

334 Chapter 14. Simulation Standard Interface (SimSinter)

https://github.com/CCSI-Toolset/SimSinter/blob/master/docs/SimSinter%20gPROMS%20Technical%20Manual.pdf
https://github.com/CCSI-Toolset/SimSinter/blob/master/docs/SimSinter%20gPROMS%20Technical%20Manual.pdf

FOQUS Documentation, Release 3.22.dev0

Fig. 28: SinterConfigGUI Variable Configuration Page Description “Joe’s Height”

14.1. Contents 335

FOQUS Documentation, Release 3.22.dev0

Fig. 29: SinterConfigGUI Variable Configuration Page Selecting Excel Output Variables

336 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Configuring gPROMS to Work with SimSinter

Unlike Aspen, changes have to be made to the gPROMS simulation process in order to work with SimSinter. In fact,
SimSinter does not define the inputs to the simulation, gPROMS does. On the other hand, gPROMS does not
determine the outputs, SimSinter does. This odd and counter-intuitive situation is the result of how gPROMS

gO:Run_XML is designed.

The modification to the gPROMS simulation must be done by a developer with an intimate understanding of the
simulation, usually the simulation writer. In some cases additional variables may need to be added to handle an extra

step between taking the input and inserting it into the variable where gPROMS will use the data.

1. Open the gPROMS simulation file (ends in .gPJ) in ModelBuilder 4.0 or newer. For this example, use the
gPROMS install test file “BufferTank_FO.gPJ”, found in:

examples/tutorial_files/SimSinter/Tutorial_4

Double-click on the .gPJ file to open ModelBuilder, as shown in Figure Opening BufferTank in gPROMS Model
Builder.

Fig. 30: Opening BufferTank in gPROMS Model Builder

2. This simulation was originally a simple BufferTank simulation. However, it was modified into an example of all
the different kinds of variables the user can pass into gPROMS via SimSinter. Therefore, it has a lot of extra
variables that do not really do anything, with very generic names, like “SingleInt.” The simulation consists of
a single model, “BufferTank”, that contains all the simulation logic, and most of the parameter and variable
declarations. The SimSinter simulation will change some of these PARAMETERS and VARIABLES to change
the output of the simulation.

3. The example file contains two Processes. SimSinter can only run gPROMS Processes, so any gPROMS simula-
tion must be driven from a Process. “SimulateTank” is the original BufferTank example with hardcoded values,
“SimulateTank_Sinter” contains the example of setting values with Sinter. The “SimulateTank_Sinter” example
will be recreated in this tutorial.

4. First copy the existing hard-coded Process “SimulateTank”.

5. Right-click on Processes and select Paste to make a new process.

6. The new process will be named “SimulateTank_1”. Rename the process by right-clicking on it and selecting
Rename.

7. Now open up the new “SimulateTank_tutorial” Process. It has the same hard-coded values as “SimulateTank”.

8. First, the user needs to add a FOREIGN_OBJECT named “FO” in the PARAMETER section. Then the
user needs to set that FOREIGN_OBJECT to “SimpleEventFOI::dummy” in the SET section. This FOR-
EIGN_OBJECT is how inputs are received from SimSinter.

9. This particular simulation has a large number of input variables that simply demonstrate how to set different
types. These are named based on their type. Any variable named similarly to “SingleInt” or “ArraySelector” can

14.1. Contents 337

gO:Run_XML

FOQUS Documentation, Release 3.22.dev0

Fig. 31: Viewing BufferTank in gPROMS Model Builder

338 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 32: Viewing SimulateTank in gPROMS Model Builder

14.1. Contents 339

FOQUS Documentation, Release 3.22.dev0

Fig. 33: Copying SimulateTank

Fig. 34: Paste SimulateTank

340 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 35: Rename SimulateTank

Fig. 36: Opening SimulateTank_tutorial

14.1. Contents 341

FOQUS Documentation, Release 3.22.dev0

Fig. 37: Adding the FOREIGN_OBJECT

be safely ignored for this tutorial. For a full list of the methods for setting different types see the later section
specifically for covering that. Any variable in the simulation can be an input, whether it is defined in the Process
or one of the models referenced by the process, or in a model referenced by a model, etc. All inputs take their
values from the FOREIGN_OBJECT defined, followed by the type name, two underscores, the input variable
name, an open parenthesis, an optional index variable (for arrays), and closed with a close parenthesis and a
semicolon. For a scalar:

FO.<Type>__<InputName>();

SimSinter can only handle arrays inputted in FOR loops such as:

FOR ii := 1 TO <array size> DO
<ArrayName>(ii) := FO.<Type>1__<InputName>(ii);

END

For this example the user only really needs to set “T101.Alpha” in PARAMETER, “T101.FlowIn” in ASSIGN,
and “T101.Height” in INITIAL.

10. Now test “SimulateTank_tutorial” by selecting it and clicking the green Simulate triangle. When the simulation
runs it will ask for every input variable the user has defined. For the example variables that do not effect the
simulation, such as “SingleInt”, any valid value will work. For the values that do effect the simulation, these
values work:

REAL__AlphaFO = .08
REAL__FlowInFO = 14
REAL__HeightFO = 7.5

342 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 38: Setting up Input Variables

Fig. 39: Testing SimulateTank_Tutorial

14.1. Contents 343

FOQUS Documentation, Release 3.22.dev0

Exporting an Encrypted Simulation to Run with SimSinter

SimSinter can only run encrypted gPROMS simulations. These files have the .gENCRYPT extension. If the additions
to the simulation for reading input variables ran correctly in the previous section, the user is ready to export that

process for use by SimSinter.

1. Right-click on the Process to export (“SimulateTank_tutorial”) and select Export.

Fig. 40: Select “Export”

2. In the resulting Export window, select Encrypted input file for simulation by gO:RUN and click OK.

3. On the second page, set the Export directory to a directory the user can find. Preferably one without any other
files in it so the user will not be confused by the output. If the filename or the Encryption password are not
changed, SimSinter will be able to guess the password. If either of those values are changed, the user will
have to set the correct password in the SinterConfigGUI password setting. A Decryption password is probably
unnecessary, as the user has the original file. SimSinter does not use it. When the user has finished setting up
these fields, click Export Entity.

4. The resulting .gENCRYPT file will be saved to a subdirectory named “Input” in the save directory specified in
Step 3. The first part of the name will be identical to the .gPJ filename. The user should not rename it because
the SinterConfig file will guess this name, and currently changing it requires editing the SinterConfig file.

344 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 41: Select “Encrypted Input File”

Fig. 42: Export Entity Page

14.1. Contents 345

FOQUS Documentation, Release 3.22.dev0

Configuring SimSinter to Work with gPROMS

Now that the gPROMS process has been prepared, the SimSinter configuration can be done.

1. The “SinterConfigGUI” can be launched from FOQUS, via the Create/Edit button found in File→ Add/Update
Model to Turbine or “SinterConfigGUI” may be run on its own by selecting CCSI Tools → FOQUS → Sin-
terConfigGUI from the Start menu.

2. The splash window displays, as shown in Figure SinterConfigGUI Splash Screen. The user may click the splash
screen to proceed, or wait 10 seconds for it to close automatically.

Fig. 43: SinterConfigGUI Splash Screen

3. The SinterConfigGUI Open Simulation window displays (Figure SinterConfigGUI Open Simulation Screen). If
“SinterConfigGUI” was opened from FOQUS, the filename text box already contains the correct file. To proceed
immediately click Open File and Configure Variables or click Browse to search for the file.

This tutorial will use the .gPJ file edited in Section 1.1. Remember that SinterConfigGUI cannot read the .gEN-
CRYPT file that is actually run by SimSinter. Instead, the user must open the .gPJ file the ModelBuilder uses.

Once the file is selected, click Open File and Configure Variables.
4. The SinterConfigGUI Simulation Meta-Data window displays as shown in (Figure SinterConfigGUI Simulation

Meta-Data Save Text Box). Unlike the other simulations, gPROMS has not started up in any way. SinterConfig-
GUI does not get information from gPROMS directly, it must parse the .gPJ file instead.

5. The first and most important piece of meta-data is the SimSinter Save Location at the top of the window. This
is where the Sinter configuration file is saved. The system suggests a file location and name. The user should
confirm this is the intended location of the files to not accidently overwrite other files. Enter the remaining fields
to provide the meta-data to describe the simulation that was just opened and then click Next.

346 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 44: SinterConfigGUI Open Simulation Screen

14.1. Contents 347

FOQUS Documentation, Release 3.22.dev0

Fig. 45: SinterConfigGUI Simulation Meta-Data Save Text Box

6. The SinterConfigGUI Variable Configuration Page window displays as shown in Figure SinterConfigGUI
gPROMS Settings Configuration. gPROMS has two settings, ProcessName and password. SimSinter has
guessed at both the ProcessName and the password. For this example the password is correct, but the Process-
Name is incorrect. SimulateTank is the process that isn’t configured to work with SimSinter. On the left side we
can see the Variable Tree. The root is connected to the three processes defined in this .gPJ file. First, change
the ProcessName to “SimulateTank_tutorial”.

7. After changing the ProcessName, click Enter (or clicks away). The Selected Input Variables will automatically
display all of the available input variables. This is because the input variables have been configured in gPROMS,
and SimSinter has parsed them out of the .gPJ file, as long as you have the ProcessName set correctly. This
also means that the user cannot add new input variables in SinterConfigGUI, only in gPROMS. SimSinter also
does its best to identify the Default values, Min, and Max of the variables. The default can only be calculated
from the file if it was defined purely in terms of actual numbers. SimSinter cannot evaluate other variables or
functions. Therefore,

DEFAULT 2 * 3.1415 * 12

will work. However,

DEFAULT 2 * PI * radius

will not work, because SimSinter does not know the value of either PI or radius, and SimSinter will just set the
default to 0.

Min and Max values are taken from the variable type, if there is one.

8. Now the output values can be entered. Expand the “SimulateTank_tutorial” Process on the Variable Tree, expand
the “T101” model, and then double-click on “FlowOut” to make it the Preview Variable. Notice that the Make

348 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 46: SinterConfigGUI gPROMS Settings Configuration

Input button is disabled. As stated above, the user cannot make new Input Variables in SinterConfigGUI. Only
Make Output is allowed.

9. If Make Output is clicked, “FlowOut” will be made an Output Variable as shown in Figure FlowOut as an Input
Variable. The Description can be updated, but SimSinter made a good guess in this example; therefore, there is
no need to change the description.

10. By the same method, make Output Variables “HoldUp” and “Height.”

11. The variables names should be made shorter. Simply click on the Name column and change the name to your
preferred name.

12. For future testing, make sure the defaults are good values. The only three input variables that matter have the
following defaults:

AlphaFO = 0.8
FlowInFO = 14
HeightFO = 7.5

13. When finished making output variables, click Next at the bottom of the variables page. If there were any input
vectors, the Vector Default Initialization page will display. Here the default values of the vectors may be edited.

14. Finally, click Finish and save your configuration file. Your gPROMS simulation should now be runnable from
FOQUS.

14.1. Contents 349

FOQUS Documentation, Release 3.22.dev0

Fig. 47: SinterConfigGUI Automatically Displays Input Variables

14.1.3 Additional ACM Functionality with Excel/VBA

When additional functionality is needed when working with Aspen Custom Modeler (ACM), such as custom
initialization routines or executing complicated cyclic models, using excel/VBA execution of the ACM simulation is a

viable option. The excel file can then be connected to FOQUS through the documented SimSinter connection.

Below is an example of a VBA macro titled ‘runAspen’ for executing a temperature swing adsorption (TSA) cycle
simulated in ACM.

Code block 1 creates the ACM object using objects installed with Aspen simulation workbook. The full path of the
ACM file is needed in the ‘ACMApp.OpenDocument’ function. The ‘ACMSimulation’ object is used to read/write
variables in the simulation and even run the simulation. Additionally, you can view the aspen simulation by setting

‘ACMApp.Visible’ to True.

Code block 2 changes the value of a fixed variable in the simulation through the ‘ACMSimulation’ object. This can be
a hardcoded value in the macro script, or it can read from a worksheet cell which is shown here.

Code block 3 runs the custom initialization and simulation routine for this TSA example. The model is first run in
initialization mode and then to ensure that the cycle task will correctly run, it is deactivated and then reactivated. The

model is again initialized and then run in dynamic mode.

Code block 4 reads results from the model and then closes the simulation.

This is a simple example, but additional examples and more information for scripting and automation can be found in
the documentation for ACM. To run the model using FOQUS, connect the excel file which contains the execution

macro using SimSinter, and create a flowsheet node for the resulting turbine model. Tutorials for Excel/SimSinter and
creating a flowsheet are linked below.

350 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 48: Preview of the FlowOut Variable

14.1. Contents 351

FOQUS Documentation, Release 3.22.dev0

Fig. 49: FlowOut as an Input Variable

https://foqus.readthedocs.io/en/stable/chapt_sinter/tutorial/excel.html
https://foqus.readthedocs.io/en/stable/chapt_flowsheet/tutorial/sim_flowsheet.html

Specifying that the macro should be run can be done during the SimSinter setup step or in the settings tab after the
flowsheet node has been created. The node settings for our example setup are shown below in which the ‘runAspen’

macro is specified.

352 Chapter 14. Simulation Standard Interface (SimSinter)

https://foqus.readthedocs.io/en/stable/chapt_sinter/tutorial/excel.html
https://foqus.readthedocs.io/en/stable/chapt_flowsheet/tutorial/sim_flowsheet.html

FOQUS Documentation, Release 3.22.dev0

Fig. 50: HoldUp and Height Output Variables

14.1. Contents 353

FOQUS Documentation, Release 3.22.dev0

Fig. 51: Editing Variable Names

354 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 52: Editing Defaults

Fig. 53: Editing Vectors

14.1. Contents 355

FOQUS Documentation, Release 3.22.dev0

Fig. 54: VBA Example Code

356 Chapter 14. Simulation Standard Interface (SimSinter)

FOQUS Documentation, Release 3.22.dev0

Fig. 55: Node Settings for Running Excel Macro

14.1. Contents 357

FOQUS Documentation, Release 3.22.dev0

358 Chapter 14. Simulation Standard Interface (SimSinter)

CHAPTER

FIFTEEN

SURROGATE MODEL BASED OPTIMIZER

15.1 Contents

15.1.1 Surrogate model-based optimizer - overview

Introduction

As part of the improvements and new capabilities of FOQUS, the Surrogate Model-based Optimizer is an automated
framework for hybrid simulation-based and mathematical optimization. The SM-based Optimizer in FOQUS

leverages the direct link with commercial simulators, generation of surrogate models, access to algebraic modeling
systems for optimization, and implements a modified trust region approach for the optimization of advanced process

systems.

The motivation behind developing this framework was to combine the advantages of both, simulation based, and pure
mathematical optimization. Pure mathematical optimization directly leverages the equations describing the physical

system to be optimized. Such models are the most accurate and complete representation of the system, and thus
provide the most accurate optimization results. This approach encounters challenges, however, when large sets of

PDE’s and highly complex, nonlinear representations are required to sufficiently characterize the process of interest.
The mathematical model can then become intractable. Simulation-based optimization, on the other hand, considers

the system model to be a black box and is based on a heuristic algorithm that uses the results from process
simulations to obtain the relationship between the relevant system input and output variables. Although this approach
can be used to obtain satisfactory results for large scale, complex systems, it can often be computationally expensive

and hence, time consuming, due to multiple simulation runs.

The SM-based optimization algorithm involves generating a simplified representation of the rigorous process model
(i.e. built using advanced commercial simulators like ASPEN, gPROMs, Python, etc.) via surrogate models that are
more amenable to gradient-based optimization methods and nonlinear programming (NLP) solvers. This approach

can overcome the difficulties associated with complex process models in terms of intractability and multiple
evaluation requirement, without significantly compromising solution quality and speed, provided that the surrogate

modeling method is accurate.

359

FOQUS Documentation, Release 3.22.dev0

Additional python packages required

1. Surrogate modeling toolbox - smt: pip install smt

2. Experimental design package for python - pyDOE: pip install pyDOE

3. Pyomo package for optimization: pip install pyomo

4. Mathematical optimization solver ipopt: conda install -c conda-forge ipopt (preferred installation method for
Windows users)

Note: smt package is required to access its Latin hypercube sampling method, which is required to generate samples
and re-build surrogate models in each iteration of the algorithm. pyDOE package is a requirement within the smt

package, which makes its installation necessary.

Framework

Fig. 1: Figure 1 - Framework for surrogate model-based optimization algorithm

As shown in figure 1, the framework consists of 6 main steps, in which the first 2 steps require the user interaction,
while the rest of the algorithm will be performed automatically. The detailed description of each Step is provided here:

Step 1 – Flowsheet set up: First, the user must provide a rigorous process simulation to the FOQUS flowsheet, then
select the input and output variables of interest. Once, the simulation node has been tested and the user provided input
variables with their default values, upper and lower bounds, the user needs to generate simulation samples using the
UQ module in FOQUS for a given input space. At this point, the upper and lower variable bounds will be considered

as the initial trust region, and the samples will be used to develop the initial surrogate model.

Step 2 – Surrogate Model Development: This step is simple, but critical to minimize the number of iterations
required in the algorithm. The user must select the number of samples, and alamo settings to generate the best

surrogate possible. Finally, The user generates a surrogate model based on the simulation samples using
FOQUS-ALAMO module.

Step 3 – Mathematical Optimization: In the Optimization module, setup the problem by selecting the decision
variables, providing the objective function, and additional constraints. Since, FOQUS Optimization module allows
multiple derivative free optimizers (DFO), user must select the surrogate model-based optimizer as the solver, with
appropriate settings for the algorithm (detailed description of the settings is provided in the tutorial). The SM-based

360 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

Fig. 2: Algorithm Steps

optimizer formulates and solves the optimization problem by creating a Pyomo model (Concrete Model), adding the
input and output variables (as Pyomo variables with bounds – trust region), adding the surrogate models as Pyomo

constraints, and adding additional constraints provided by the user (g(x)>0 or h(x)=0). In this step, to avoid
eliminating feasible solutions due to local optimums, a multi-start approach has been implemented, in which the

optimization problem is solved for different initialization points. A combination of initial values is used based on the
variable bounds, mid-point, and user provided values for the decision variables. The optimal solution chosen

corresponds to that case which gives best value of objective function (minimum or maximum). Note, if a solution
returns infeasible it will be eliminated. The solution is called x* and ysm, for optimum decision variables and output

variables, respectively.

Step 4 – Rigorous Process Simulation: In this step, the process simulation is run at the optimal point obtained in step
3 (x*), then evaluating the optimal solution using the rigorous model, we obtain the corresponding output variable

values ysim.

Step 5 – Termination Condition Check: The algorithm includes three termination conditions to determine if the
optimal solution has been obtained:

|𝑧𝑠𝑖𝑚 − 𝑧𝑠𝑚|
|𝑧𝑠𝑖𝑚|

≤ 𝜖....(1)

|𝑦𝑠𝑖𝑚 − 𝑦𝑠𝑚|
|𝑦𝑠𝑖𝑚|

≤ 𝜖....(2)

𝑔(𝑥*) ≥ 0....(3)

First, Equation 1 checks if the objective function from the surrogate model (zsm) minus the one obtained evaluating
the rigorous model (zsim) meet the tolerance. Secondly, the relative error between the output variables from the
optimization problem (ysm) and the rigorous simulation (ysim) in Equation 2. Finally, Equation 3 checks that the

additional constraint is satisfied at the optimum point. If the conditions in step 5 are satisfied, the algorithm is
terminated, otherwise, step 6 is implemented.

Step 6 – Update Trust Region: In this step, the input variable upper and lower bounds (xub and xlb) are adjusted to
shrink the trust region. The extent to which the trust region shrinks (difk) depends on the fractional multiplier . The

updated upper and lower bounds (xub,k+1 and xlb,k+1) are calculated around x*, based on difk:

0 ≤ 𝛼 ≤ 1

15.1. Contents 361

FOQUS Documentation, Release 3.22.dev0

𝑑𝑖𝑓𝑘 = (𝑥𝑢𝑏,𝑘 − 𝑥𝑙𝑏,𝑘) * 𝛼

𝑥𝑙𝑏,𝑘+1 = 𝑥* − 𝑑𝑖𝑓𝑘
2

....(𝑥𝑙𝑏,𝑘+1 = 𝑥𝑙𝑏,𝑘=0...𝑖𝑓, 𝑥𝑙𝑏,𝑘+1 < 𝑥𝑙𝑏,𝑘=0)

𝑥𝑢𝑏,𝑘+1 = 𝑥* +
𝑑𝑖𝑓𝑘

2
....(𝑥𝑢𝑏,𝑘+1 = 𝑥𝑢𝑏,𝑘=0...𝑖𝑓, 𝑥𝑢𝑏,𝑘+1 > 𝑥𝑢𝑏,𝑘=0)

Note that if the ratio of upper and lower bounds is less than or equal to a set value of bound ratio, the trust region is
not updated further, and the algorithm terminates.

If
𝑥𝑢𝑏,𝑘+1

𝑥𝑙𝑏,𝑘+1
≤ 𝑏𝑜𝑢𝑛𝑑𝑟𝑎𝑡𝑖𝑜

Stop

Further, Latin hypercube samples are generated in the updated trust region. This sampling method ensures that the
sample points are uniformly spaced out and cover the entire trust region without any skewness. Once the samples are

generated, step 2 is repeated using this new data set and the original ALAMO settings.

15.1.2 Surrogate model-based optimizer - tutorial

Flash Optimization

Problem Statement: An Ethanol-CO2 mixture at 50 mol %, enters a flash column at 100 kg/hr, 25 0C and 100 bars.
The optimum flash column pressure needs to be determined such that maximum revenue can be obtained based on the
CO2 obtained in the vapor stream, and Ethanol obtained in the liquid stream. The optimization is subject to a purity

constraint, specifying that the CO2 mass % in the vapor phase should be at least 98.5 %. The system is shown in
Figure 1.

Instructions
Step 1 - Flowsheet Setup

Step 1.1 - Setup the Aspen model for flash column as FOQUS simulation node : To setup the Aspen model
in the FOQUS flowsheet, first, create and add the SimSinter json file to turbine. Then, create a node named
‘FLASH’, and load the simulation in the node. The Aspen and json files (along with the FOQUS file) can
be found in the folder: examples/tutorial_files/SM_Optimizer/Flash_Optimization.

Note: The examples/ directory refers to the location where the FOQUS examples were installed, as
described in Install FOQUS Examples.

Figures 2 and 3 represent the FOQUS node with loaded simulation. Finally, run the flowsheet simulation.

Step 1.2 - Generate a simulation ensemble by selecting ‘FLASH.PRES’ as a variable with bounds 1-10 bar
(in this case, keep the other variables fixed). Select Latin Hypercube Sampling with 20 points, and after
the samples are generated, launch the simulations. Figure 4 represents the simulation ensemble generation.

For more details on this, refer to the documentation: https://foqus.readthedocs.io/en/latest/chapt_uq/
tutorial/sim.html

Step 2 - Surrogate Model Development
Step 2.1 - Select Data Set: In the surrogate modeling module, select ALAMO as the tool and under ‘Data’
tab, ensure that the dataset corresponds to the correct UQ Simulation Ensemble. If there are multiple data
sets, add filters to select the appropriate set. Figure 5 represents the data selection in the surrogates tab.

362 Chapter 15. Surrogate Model Based Optimizer

https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/sim.html
https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/sim.html

FOQUS Documentation, Release 3.22.dev0

Fig. 3: Figure 1: Ethanol-CO2 Flash System

Fig. 4: Figure 2: Input variables of the Ethanol-CO2 Flash Simulation Node in FOQUS

15.1. Contents 363

FOQUS Documentation, Release 3.22.dev0

Fig. 5: Figure 3: Output variables of the Ethanol-CO2 Flash Simulation Node in FOQUS

Fig. 6: Figure 4: Simulation ensemble generation

364 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

Fig. 7: Figure 5: Select data for surrogate model generation

Note: If a particular simulation ensemble needs to be used from the UQ module for generating the surrogate
model, add a data filter, referring to the instructions in the documentation: https://foqus.readthedocs.io/
en/latest/chapt_uq/tutorial/data.html

Step 2.2 - ALAMO input/output variables: Under ‘Variables’ tab, select ‘FLASH.PRES’ as the surro-
gate model input variable, and ‘FLASH.CARBOLIQ’, ‘FLASH.CARBOVAP’, ‘FLASH.ETHANLIQ’,
‘FLASH.ETHANVAP’ as the surrogate model output variables. Figure 6 represents surrogate model vari-
ables selection.

Step 2.3 - ALAMO Settings: Under ‘Method Settings’, to select the data set to be used to develop the
surrogate models, an Initial Data Filter can be applied to the full data set, if there are no filters, simply
select “all”. In this case, we select “uq2” filter. In Figures 7 and 8, the settings 3 to 9 values are default
in FOQUS. The settings 10 to 22 have been selected to explore several basis functions and obtain the
best model possible, while minimizing the size of the model (selecting Bayesian Inference Criteria as the
modeler). The rest of the settings are kept as their default values. For more information about the best
settings to be used in ALAMO, please see the following documentation: https://foqus.readthedocs.io/en/
latest/chapt_surrogates/tutorial/alamo.html

Note that setting number 42 is the name of the python file that gets created after ALAMO runs. It contains
the Pyomo model for optimization, based on the ALAMO generated surrogate model. This python file is
accessed by the SM based optimizer.

Step 2.4 - Under ‘Execution’, run ALAMO, as shown in Figure 9:

Step 3 - Mathematical Optimization:
Step 3.1 - Problem Setup - select optimization variables: In the Optimization module, select
‘FLASH.PRES’ as the decision variable. Keep the other input variables fixed, as shown in
Figure 10.

Step 3.2 - Problem Setup - objective function and additional flowsheet constraints declaration:
The objective is to maximize the separation process, therefore, we assume that the selling price
of the vapor and liquid are $5/kg and $30/kg, respectively. Additionally, the CO2 vapor stream

15.1. Contents 365

https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/data.html
https://foqus.readthedocs.io/en/latest/chapt_uq/tutorial/data.html
https://foqus.readthedocs.io/en/latest/chapt_surrogates/tutorial/alamo.html
https://foqus.readthedocs.io/en/latest/chapt_surrogates/tutorial/alamo.html

FOQUS Documentation, Release 3.22.dev0

Fig. 8: Figure 6: Select variables for surrogate model generation

366 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

Fig. 9: Figure 7: Select appropriate method settings for surrogate model generation

Fig. 10: Figure 8: Select appropriate method settings for surrogate model generation continued

15.1. Contents 367

FOQUS Documentation, Release 3.22.dev0

Fig. 11: Figure 9: Run ALAMO to generate surrogate model

Fig. 12: Figure 10: Select optimization variables

368 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

must be at least 98.5% pure. In the Objective/Constraints tab, under the objective function
f(x) expression section or box, enter -5*f.FLASH.CARBOVAP -30*f.FLASH.ETHANLIQ Un-
der the inequality constraints section/box expression, enter -f.FLASH.CARBOVAP/(f.FLASH.
CARBOVAP + f.FLASH.ETHANVAP) + 0.985

Fig. 13: Figure 11: Add objective function and constraints to the solver

Step 3.3 - Optimization solver settings: Under the solver tab, select “SM_Optimizer”

Figure 12 shows the solver options. solver options 1 to 11 are algorithm specific.

Solver option 1 selects the source of mathematical optimization solver. It can either be “gams”
or “pyomo”. It is preferred to keep it at the default setting, “pyomo”.

Solver option 2 selects the mathematical optimization solver which will be used to solve the
optimization at each iteration. It is preferred to keep it at the default setting, “ipopt”.

Solver option 3 selects the type of mathematical model that is formulated. This is used when
“gams” is selected as the solver source. Depending on the type of problem, it can be non-
linear programming “nlp”, linear programming “lp”, or mixed integer non-linear programming
“minlp”. The setting would be “nlp” for this case.

Solver option 4 describes the maximum number of iterations that are allowed before the algo-
rithm terminates. It can be set to 10 in this case.

Solver option 5 describes the value of ‘alpha’ which is a fractional multiplier that affects the
extent to which the trust region shrinks at each iteration. The smaller this value is, faster is the
rate of convergence of the algorithm. However, a very small value might discard the optimal
solution. A value of 0.8 is chosen for this case.

Solver option 6 describes the number of Latin hypercube samples for generating the surrogate
model in each iteration. Note that more the number of samples, a more accurate surrogate model
could be obtained, however, the algorithm would take a longer time to converge. A value of 10
is chosen in this case.

Solver option 7 describes the lower limit of the ratio of upper and lower bounds of the decision
variables. This condition is imposed while shrinking the trust region, to ensure that the solver
converges. A value of 1 is chosen in this case.

Solver option 8 allows the user to display the mathematical optimization solution at each itera-
tion

Solver options 9, 10, 11 describe the tolerance for the objective value, inequality constraint, and
output variable value termination conditions, respectively. A value of 0.001 is chosen in this
case.

15.1. Contents 369

FOQUS Documentation, Release 3.22.dev0

Fig. 14: Figure 12: Select appropriate solver options

370 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

Solver option 12: if true, the optimization results will be stored in the FOQUS flowsheet. i.e.
input and output variable values.

Since, each Algorithm iteration includes the generation of surrogate models, a call to Pyomo
solver, and a call to the rigorous process simulation, the results are stored in the flowsheet results
data tab, under the set name provided by the user in option 13. Solver option 14 corresponds
to the python file containing the Pyomo model for the initial surrogate model developed in the
previous steps. The name should match setting number 42 in the ALAMO settings. User can
select the names of text and python files from option 15 to 17. The names should end with the
required extension ‘.txt’ for text file and ‘.py’ for python file.

Step 3.4 Under the Run tab, click on ‘start’. The main details for each iteration get displayed on
the message window as the solver runs, the details are divided by section (i.e. step 3, step 4, step
5, etc.). After the final iteration, once the optimization is successful, the results get displayed
as shown in the Figure 13 below:

Result Analysis:
The optimal solution was obtained in 3 iterations, and reported a revenue of $ 1677.06 /hr and the problem
was solved in 4 min 30 seconds. The overall implementation of the algorithm required a total of 23 rigorous
simulations (ASPEN), 9 calls to the Ipopt solver, and two calls to ALAMO. Compared with a DFO solver
the SM-based obtained the same solution in 6 min 30 seconds. The final optimization result is loaded in
the node input and output variables, and gets stored in the flowsheet results data tab.

Solver option 15 corresponds to the file saving the surrogate models generated in each algorithm iteration;
Solver option 16 corresponds to the python file containing plots that show termination condition values
at each algorithm iteration. These files are useful to track the extent of convergence, as the algorithm
proceeds. Finally, Solver option 17 corresponds to the python file that contains data to show the parity plot
for the final surrogate model.

Note that these extra text and python files can be found in the “user_plugins” folder of FOQUS working
directory.

MEA Carbon Capture System Optimization

Summary: This tutorial demonstrated the implementation of the surrogate model-based optimization. This includes
setting up the Aspen model in FOQUS, generating the initial dataset (required for surrogate model development) in the
UQ module, generating the surrogate model using ALAMO, and further, using it to solve the required optimization
problem. In each iteration, after the optimization is solved, the rigorous model is evaluated at the optimum decision
variable values returned by the optimization solver. Note that the final optimal solution reported by the algorithm

corresponds to the solution of the rigorous model when evaluated at the optimal decision variable values. In
comparison with other optimization tools provided by FOQUS, the SM-based optimizer has an advantage over DFO
solvers in terms of total solution time and accuracy. For the flash optimization example, SM based optimizer took

total 4 min 30 seconds, while the NLopt DFO solver took 6 min 30 seconds for obtaining the same solution. For the
MEA system example, SM based optimizer took total 48 mins, while the NLopt DFO solver took 1 hr 5 mins.

Overall, the SM based optimizer has expanded the possibility of solving optimization problems involving complex
flowsheets within a shorter time frame as compared to DFO solvers, without compromising solution accuracy.

15.1. Contents 371

FOQUS Documentation, Release 3.22.dev0

Fig. 15: Figure 13: Start the optimization and check results in the message window

372 Chapter 15. Surrogate Model Based Optimizer

FOQUS Documentation, Release 3.22.dev0

Fig. 16: Figure 14: MEA Carbon Capture System
Problem Statement: An MEA solvent based carbon capture system is set up in Aspen Plus v10, as shown in Figure 14, with a
design specification of carbon capture rate 90 %. The flue gas flowrate to the absorber is 2266.1 kg/hr with 17.314 % by mass
CO2. It is sought to minimize the specific reboiler duty associated with the regenerator, by varying the CO2 loading in the lean

solvent entering the absorber.
Note: The Aspen, json, and FOQUS files for this example can be found in the folder:

examples/tutorial_files/SM_Optimizer/MEA_Optimization
Result: After implementing the SM based optimization solver, the solution is: Optimum CO2 lean loading = 0.1695 mol CO2/mol
MEA Rigorous model output variable values at optimum: Solvent Flowrate = 5438.703 kg/hr Total CO2 Capture Rate = 353.1799

kg/hr SRD = 3.6382 MJ/kg CO2

15.1. Contents 373

FOQUS Documentation, Release 3.22.dev0

374 Chapter 15. Surrogate Model Based Optimizer

CHAPTER

SIXTEEN

DEBUGGING

This chapter contains information that may be helpful in resolving a problem or filing a bug report.

16.1 How to Debug

Log files may contain very useful information when reporting problems. The log files are contained in the logs
sub-directory of the FOQUS working directory. To change the log message levels in FOQUS go to the FOQUS

Settings button from the Home window. From there various log settings can be changed. The debugging log level
provides the highest level of information.

Almost any error that occurs in FOQUS should be logged. Occasionally, an error may occur that is difficult to find, or
causes FOQUS to crash before logging it. In that case the “FOQUS Console” application can be used. All output

from FOQUS, including messages that cannot be seen otherwise will be shown in a “cmd” window which will remain
open even after FOQUS closes.

When running heat integration, the debugging information can be found in
\gamsHeatIntegration.lst. This file includes detailed results and errors returned by GAMS.

Most UQ routines interact with PSUADE via Python wrappers. When PSUADE is running, the stdout is written to
psuadelog in the working directory. (At present, only some PSUADE commands write to this log; however, this will
be standardized in the near future so that all PSUADE commands write to this log.) Other errors that are due to the

Python wrappers or PySide GUI components are written to the logs subdirectory in the working directory.

16.2 Known Issues

The following are known unresolved issues:

• Calculator blocks that use Excel in Aspen Plus do not work in FOQUS, because they are not supported by the
Aspen Plus COM interface, and can only be used in interactive mode.

• The FOQUS flowsheet can be edited while a flowsheet evaluation, optimization, or UQ is running. This should
not be allowed, and may cause unexpected behaviors. Currently changes to a flowsheet while running an evalu-
ation will be ignored and reset when the evaluation is completed.

• The win32com module generates Python code, which it needs to run. This code is generated in the FOQUS
install location “\distwin32comgen_py.” In some cases there may be a problem writing to that directory due to
permission settings. This will prevent FOQUS from running simulations locally. If this error is encountered the
solution is to make the “gen_py” directory user writable. So far, in testing, this error seems to occur in Windows
8 and 10, but not 7.

375

FOQUS Documentation, Release 3.22.dev0

• FOQUS has trouble getting files from Turbine and saving them to the DMF when dealing with files in Turbine
involving directories.

• The default port for TurbineLite is 8080. If another program is already using port 8080, there will be an error in
FOQUS when connecting to TurbineLite. In the Turbine Tab of the Settings window, there is a tool to change
the TurbineLite port. If the TurbineLite port is changed the configuration file that FOQUS uses to connect to
TurbineLite, must also be changed.

16.3 Turbine Configuration

Turbine Lite uses a configuration file to set many runtime options for submitted jobs, most of which are pre-set server
information based on the software version. However, there are a few options which control the run behavior that users

can modify to suit their needs. The “User Settings” section of the file passes timeout values which cap how many
minutes Turbine will let a certain action occur before force-stopping.

On a local machine, the file is located at C:\Program Files
(x86)\Turbine\Lite\Clients\AspenSinterConsumerConsole.exe.config and requires administrative

access to save edits. FOQUS and Aspen need to be closed when you save the file so Turbine can update its config for
new instances. Lines 93-108 set the “User Settings”, which include the timeout for the total run, the timeout for the

run setup, and the timeout for the post initialization run. These values are all in minutes.

16.4 Contact and Support

There are multiple ways to contact the development team, get support, file a bug, make a feature request and even
contribute code changes to FOQUS:

• Send a private email to ccsi-support@acceleratecarboncapture.org for contacting an internal set of developers.

• Subscribe to and send an email to our ccsi-users@acceleratecarboncapture.org public discussion forum to ask a
question of the existing user base.

• Use any of the public GitHub features:

– Read or start a new Discussion

– Open a new Issue if you believe you’ve found a bug (please include detailed steps on how to reproduce the
error, including if possible, screenshots and log files.) This is also where you can make feature requests.

– Contribute changes to the FOQUS project by opening a Pull Request

General information about the Carbon Capture Simulation for Industry Impact (CCSI2) project, of which FOQUS is a
part, can be found on the https://www.acceleratecarboncapture.org/ web site.

376 Chapter 16. Debugging

mailto:ccsi-support@acceleratecarboncapture.org
mailto:ccsi-users@acceleratecarboncapture.org
https://github.com/CCSI-Toolset/FOQUS/discussions
https://github.com/CCSI-Toolset/FOQUS/issues
https://github.com/CCSI-Toolset/FOQUS/pulls
https://www.acceleratecarboncapture.org/

CHAPTER

SEVENTEEN

DEVELOPER DOCUMENTATION

Since the source code for all of FOQUS is publicly available, the more adventurous user may wish to look at the
inner-workings of FOQUS to get a better understand how it works, contribute a fix to a bug, or add new features to the
source tree. Other members of our CCSI partnership (national laboratories, industry and academic institutions) may

be more actively involved in the development of FOQUS.

This chapter describes at a high level how any such person can set themselves up for getting, building, running,
testing, documenting and contributing to FOQUS development.

17.1 Development Tools, Technology and Process

FOQUS is primarily written in Python. We use the following software development tools, technologies and processes:

• GitHub is where the FOQUS source code resides.

• We make extensive use of GitHub’s Issue Tracker , Pull Requests and Project Boards for managing the develop-
ment tasks using a modified Kanban development process.

• ReadTheDocs is used to generate and host our on-line documentation.

• For Continuous Integration (CI) we use GitHub Actions.

• Anaconda for isolating Python runtime and development environment.

17.2 Developer Setup

Working as a developer is similar to how a user would work with FOQUS with the exception that they will need a
copy of the source to work with. Here is rough set of steps to get setup:

• Download and install Anaconda.

• In a terminal create a conda env in which to work:

conda create --name ccsi-foqus -c conda-forge python=3.10 pywin32=306
conda activate ccsi-foqus

• In a terminal, get the FOQUS source:

conda activate ccsi-foqus
cd CCSI-Toolset # Or a dir of your choice
git clone git@github.com:CCSI-Toolset/FOQUS.git # Note: clone the FOQUS repo if␣
→˓you expect to contribute
cd FOQUS

377

https://github.com/CCSI-Toolset/FOQUS
https://github.com/CCSI-Toolset/FOQUS
https://github.com/CCSI-Toolset/FOQUS/issues
https://github.com/CCSI-Toolset/FOQUS/pulls
https://github.com/orgs/CCSI-Toolset/projects
https://foqus.readthedocs.io
https://github.com/CCSI-Toolset/FOQUS/actions
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/

FOQUS Documentation, Release 3.22.dev0

• Build and Install FOQUS as a developer:

pip install -r requirements-dev.txt # This will pick up both user and developer␣
→˓required packages.
foqus # Start the app

17.3 Pre-commit hooks (optional, but recommended)

Pre-commit hooks are scripts that are automatically run by Git “client-side” (i.e. on a developer’s local machine)
whenever git commit is run. If the pre-commit scripts terminates with an error, the commit will be interrupted,

requiring the developer to address the failure before being able to complete the commit.

Note: This is different (and complementary to) “server-side” checks, i.e. scripts that check the code on the side of
the Git remote after the code is committed and pushed, such as the Continuous Integration (CI) suite triggered

whenever a commit is pushed to an open PR in the FOQUS GitHub repository.

Pre-commit checks are especially useful to ensure that the code is formatted correctly before it is pushed to the
FOQUS GitHub repository, which otherwise typically would cause the developer to 1) be notified by the failing CI
check that the code wasn’t formatted; 2) run the formatter manually; 3) create a new commit with the formatting

changes; 4) push the formatted code again.

FOQUS uses the pre-commit framework to manage a few hooks that are useful for FOQUS developers.

The pre-commit command is already installed as part of FOQUS’s developer dependencies. However, the
pre-commit checks (i.e. the actual scripts that Git will be running) must be installed (using pre-commit install)

as a separate step whenever the FOQUS repository is cloned:

pre-commit install

For more information, refer to the pre-commit “Quick Start” page.

17.4 Run Tests

From top level of foqus repo:

pytest
python foqus.py -s test/system_test/ui_test_01.py

17.5 Building the Docs locally

To build a local copy of the documentation:

cd FOQUS/docs
make clean
make html

Then open the file FOQUS/docs/build/html/index.html to view the results.

378 Chapter 17. Developer Documentation

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://pre-commit.com/
https://pre-commit.com/#quick-start

FOQUS Documentation, Release 3.22.dev0

17.6 Contact and Support

There are multiple ways to contact the development team, get support, file a bug, make a feature request and even
contribute code changes to FOQUS:

• Send a private email to ccsi-support@acceleratecarboncapture.org for contacting an internal set of developers.

• Subscribe to and send an email to our ccsi-users@acceleratecarboncapture.org public discussion forum to ask a
question of the existing user base.

• Use any of the public GitHub features:

– Read or start a new Discussion

– Open a new Issue if you believe you’ve found a bug (please include detailed steps on how to reproduce the
error, including if possible, screenshots and log files.) This is also where you can make feature requests.

– Contribute changes to the FOQUS project by opening a Pull Request

General information about the Carbon Capture Simulation for Industry Impact (CCSI2) project, of which FOQUS is a
part, can be found on the https://www.acceleratecarboncapture.org/ web site.

17.6. Contact and Support 379

mailto:ccsi-support@acceleratecarboncapture.org
mailto:ccsi-users@acceleratecarboncapture.org
https://github.com/CCSI-Toolset/FOQUS/discussions
https://github.com/CCSI-Toolset/FOQUS/issues
https://github.com/CCSI-Toolset/FOQUS/pulls
https://www.acceleratecarboncapture.org/

FOQUS Documentation, Release 3.22.dev0

380 Chapter 17. Developer Documentation

CHAPTER

EIGHTEEN

VECTOR VARIABLES SUPPORT CAPABILITY

18.1 Contents

18.1.1 Vector Variable Support Capability - Introduction

Motivation:

Vector variables and parameters have often been a part of chemical process, property, and economic models
developed by scientists and engineers. Some process variables of this kind, include component concentrations in a
material stream, and temperature, pressure, component concentration profiles across separation columns used for

absorption, regeneration, and distillation operations. Model parameters for some physical and thermodynamic
properties like viscosity, surface tension, interfacial area, enthalpy, entropy, fugacity, etc., are also vectors. Economic

models include capital and operating costs indexed over different components, like unit operations, raw materials,
utilities, and time horizon.

In order to develop or leverage such models for implementing simulation, optimization, and quantitative analysis in
general, it is important for the modeling/model integration platform to support vector variables. Hence, the vector
variable support capability is introduced in FOQUS, to allow creating and interfacing with vector variables across

different modeling platforms like Python, MATLAB, and Aspen Plus.

New Features in FOQUS for vector support:

In order to support vector variables, along with continued support for scalar variables, the following new features
have been introduced in FOQUS:

1. Automated GUI enabled addition and deletion of input and output vector variable elements in the node panel.

2. Access vector variable elements in the node script through a specific index-based python syntax.

3. Automated GUI enabled modification of SimSinter files based on Aspen models, for including the required vector
variable elements in it.

4. Access vector variable elements from Aspen models by uploading the modified SimSinter files to turbine, and
loading the turbine simulation in a FOQUS node.

5. Run node simulations successfully with vector-based Python, Pyomo, Aspen, and MATLAB models.

6. Access vector variable elements from the node, in the optimization module, easily through an index-based python
syntax.

381

FOQUS Documentation, Release 3.22.dev0

Potential Applications:

The vector variable support capability in FOQUS can be used for various applications based on the models, after they
have been successfully set up.

Some of the applications include, but are not limited to:

1. Parameter estimation for vector-based models.

2. Decision making for process design, using sensitivity study for process vector variables.

3. Access and analyze computational fluid dynamics model profiles.

18.1.2 Example 1 - Handling Vector Variables in Python Models

Problem Statement: Consider the multi-dimensional Rosenbrock function:
4∑︁

𝑖=0

100(𝑥𝑖+1 − 𝑥2
𝑖)2 + (𝑥𝑖 − 1)2

Set up the Python based function in a FOQUS flowsheet node using an input vector variable. Further simulate the
function in the FOQUS flowsheet.

Reference: https://www.sfu.ca/~ssurjano/rosen.html

Instructions
Step 1: Create a FOQUS node named ‘rosenbrock’ in the flowsheet section, as shown in Figure 1.

Fig. 1: Figure 1: FOQUS node for Rosenbrock function

382 Chapter 18. Vector Variables Support Capability

https://www.sfu.ca/~ssurjano/rosen.html

FOQUS Documentation, Release 3.22.dev0

Step 2: Open the node editor and under ‘Input Variables’ section, click on ‘+’ to add a new input variable. Further, in
the user interface prompt, enter the variable name ‘x’ as shown in Figure 2, and click Ok.

Fig. 2: Figure 2: Add input vector variable ‘x’

Step 3: In the next user interface prompt, enter 6 as the size of the variable as shown in Figure 3, and click Ok. This
would correspond to the number of elements in the vector, if size is greater than 1.

Step 4: In the next user interface prompt, enter 0 as the minimum value for the variable elements, shown in Figure 4,
and click Ok.

Step 5: In the next user interface prompt, enter 1 as the maximum value for the variable elements, shown in Figure 5,
and click Ok.

Step 6: In the next user interface prompt, enter 0.5 as the value for the variable elements, shown in Figure 6, and click
Ok. These are the values at which the simulation would run.

At this point in the implementation, the ‘Input Variables’ section of the node editor is populated with the vector
variable elements x_0 through x_5, (which correspond to vector variable ‘x’) as shown in Figure 7.

Step 7: Under ‘Output Variables’ section, click on ‘+’ to add a new output variable. Further, in the user interface
prompt, enter the variable name ‘y’ as shown in Figure 8, and click Ok.

Step 8: In the next user interface prompt, enter 1 as the size of the variable (since it is a scalar), as shown in Figure 9,
and click Ok.

18.1. Contents 383

FOQUS Documentation, Release 3.22.dev0

Fig. 3: Figure 3: Specify size of the input vector variable

384 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 4: Figure 4: Specify minimum value of the input vector variable elements

18.1. Contents 385

FOQUS Documentation, Release 3.22.dev0

Fig. 5: Figure 5: Specify maximum value of the input vector variable elements

386 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 6: Figure 6: Specify value of the input vector variable elements

18.1. Contents 387

FOQUS Documentation, Release 3.22.dev0

Fig. 7: Figure 7: Input vector variable elements in Node Panel

388 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 8: Figure 8: Add output scalar variable ‘y’

18.1. Contents 389

FOQUS Documentation, Release 3.22.dev0

Fig. 9: Figure 9: Specify size of the output variable

390 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

At this point in the implementation, the ‘Output Variables’ section of the node editor is populated with the scalar
variable y as shown in Figure 10.

Step 9: Enter the Rosenbrock function in the node script (set to ‘post’ mode) in python format, as shown in Figure 11.

In order to access the input vector variable element values in the node script, the syntax to be used is:
self.inVarsVector[“vector_name”].vector[index][‘value’], where the index ranges from 0 to (size-1) Eg. In this case, if

the value of 1st element of “x” needs to be accessed, we would specify: self.inVarsVector[“x”].vector[0][‘value’]

Step 10: Run the flowsheet simulation, and the output variable value is displayed, as shown in Figure 12.

The simulation runs successfully, and the output variable value is obtained as per the Rosenbrock function set up in
the node script, corresponding to the input vector element values.

It is to be noted that the functioning of other FOQUS modules like UQ, Optimization, and Surrogate Modeling is not
affected by introducing vector variables. The individual scalar variables corresponding to the vectors get displayed in

the user interface of these modules.

Important points to be noted
1. If the size specified for an input or output variable is greater than 1, the variable is constructed as a vector, and for

size = 1, it is created as a scalar.

2. The vector elements are separate scalar node variables that get created, and grouped together in a node vector
variable object ‘x’, in the background of FOQUS. Hence, ‘x’ can be considered as a vector variable that gets created

in the background, to store the scalar variables corresponding to its elements, at specific index locations.

3. Each scalar variable corresponding to the vector takes the bounds and values from the user interface prompt. Note
that in order to specify different bounds and values for each vector element, the user can provide a list with values

specific to the elements. For this example, if the node needs to be simulated for different values of each vector
element, when prompted for the values, the user can enter the list [val_0, val_1, . . . , val_5] in the interface, where

val_0, val_1, . . . , val_5 are distinctly specified values for each element by the user.

4. The output vector variables are constructed in a similar manner, as the input vector.

5. In order to access the input or output vector variable element values in the node script, the syntax to be used is:

self.inVarsVector[“vector_name”].vector[index][‘value’] for input vector variable elements, and
self.outVarsVector[“vector_name”].vector[index][‘value’] for output vector variable elements where the index ranges

from 0 to (size-1)

6. The syntax for accessing the scalar variables, created standalone, or associated with a vector, remains the same.

18.1.3 Example 2 - Handling Vector Variables in Aspen Plus Models

Problem Statement: Consider the MEA solvent based carbon capture system in the MEA_ssm product, as a part of
the CCSI-Toolset on GitHub.

An application of vector variable support for Aspen Plus models in FOQUS is accessing the temperature, pressure, or
composition profiles along a separation column, and observing the change in profile with variations in process

parameters or configurations.

In this example, for the same simulation conditions specified in CCSI_MEAModel.bkp, we will access the absorber
temperature profile for liquid and vapor phases as an output vector variable in FOQUS.

The absorber intercooler cooling water flowrates will be accessed as scalar input variables, in order to observe
changes in the absorber temperature profile, with its variation, as a potential application for the user

Set up the Aspen Plus model, CCSI_MEAModel.bkp, in a FOQUS flowsheet node with the input and output variables
as mentioned above. Further simulate the model in the FOQUS flowsheet for the original conditions provided in the

Aspen file.

18.1. Contents 391

FOQUS Documentation, Release 3.22.dev0

Fig. 10: Figure 10: Output variable in Node Panel

392 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 11: Figure 11: Rosenbrock function in Node Script

18.1. Contents 393

FOQUS Documentation, Release 3.22.dev0

Fig. 12: Figure 12: Simulation Result

394 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Instructions
Step 1: Create a SimSinter file named CCSI_MEAModel.json based on CCSI_MEAModel.bkp, ccsi10.dll, and

ccsi.opt, using the SinterConfigGUI, as shown in Figure 1.

Fig. 13: Figure 1: Setting up the initial SimSinter file

In order to create the file, access the pumparound flowrates of the absorber as input variables, and temperatures of
liquid, vapor phases at the first stage of absorber, following the ‘Path’ shown in the figure, for navigating through the

variable tree in the GUI.

This would create an initial, non-vector SimSinter file, which will be used as a basis for vectorizing it in the next steps.

Step 2: Add the following files to the FOQUS Working Directory: CCSI_MEAModel.json, CCSI_MEAModel.bkp,
ccsi10.dll, ccsi.opt.

Step 3: Open a FOQUS session, and give it an appropriate name. Further, click the Session tab dropdown, and select
the “Vectorize SimSinter File” option, as shown in Figure 2.

A user interface dialog box with the heading “SimSinter Configuration File Vectorize” will be displayed as shown in
Figure 3.

Step 4: In the user interface dialog shown in Step 3:
(i) Enter the SimSinter file name, CCSI_MEAModel.json, in the text box under the heading.

(ii) Enter None in the text box next to “Input Vector Details”, since we don’t have any input vectors of interest in
our Aspen model.

(iii) Next to “Output Vector Details”, enter a list of tuples, each one containing the vector variable name as string
type, (according to the variable tree in SimSinter), and the number of elements required as a part of the vector.

In this case, “B_TEMP” is the variable name corresponding to the liquid phase temperature along the absorber
column, and “TVAP” is the variable name corresponding to the vapor phase temperature along the absorber
column, according to their path in SimSinter. These vector variables are indexed over the absorber stages, which
is why the number of elements in each of them would be 90. Hence, enter the list [(“B_TEMP”,90),(“TVAP”,90)]
in the text box.

(iv) Enter CCSI_MEAModel_vectorize.json in the text box next to “Vectorize SimSinter File Name”.

After entering the user inputs for vectorizing the SimSinter file, the dialog box must resemble Figure 4:

Click “Ok” and wait for the dialog box to disappear.

Step 5: In the FOQUS working directory, check whether the file CCSI_MEAModel_vectorize.json has been created.
If it hasn’t been created, repeat steps 3 and 4 with the correct user inputs. If it is created, open the json file directly to

18.1. Contents 395

FOQUS Documentation, Release 3.22.dev0

Fig. 14: Figure 2: Select the option to vectorize SimSinter file

Fig. 15: Figure 3: User interface for vectorizing SimSinter file

396 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 16: Figure 4: User inputs entered for vectorizing SimSinter file

check whether it has been modified correctly.

In the json file, the dictionary corresponding to the “outputs” key must contain 180 scalar variables 90 each
corresponding to the vector variables “B_TEMP” and “TVAP”. Each scalar output variable corresponding to the
vector must contain a “vector” field which includes the vector variable it is associated with, and an “index” field,

which defines its location in the vector. The indices range from 0 to (size-1), where size is the number of elements in
the vector. Also, its path must correctly correspond to the one in the SimSinter variable tree.

Step 6: Under the “Section” dropdown in FOQUS, click on “AddUpdate Model to Turbine”, browse and upload
CCSI_MEAModel_vectorize.json to Turbine, through the user interface that gets displayed.

Step 7: In the “Flowsheet” section, create a node named “MEA_Model”. Open the node editor, select Model Type
“Turbine”, and Model “CSI_MEAModel_vectorize”.

Once the turbine model is loaded in the FOQUS node, the scalar input variables get displayed as shown in Figure 5.

The scalar output variables associated with the vector variables “B_TEMP” and “TVAP” get displayed as shown in
Figure 6.

Note that the output variable values will get loaded based on the status of the Aspen file that was used to build the
original SimSinter file. The values displayed in the above figure already correspond to the Aspen file run and saved

with results based on the original simulation inputs.

Step 8: Run the flowsheet simulation, to ensure that it has been set up correctly.

Once it runs successfully, the user can obtain the absorber temperature profiles for different values of cooling water
flowrates, as per the requirement, by generating a simulation ensemble in the UQ module of FOQUS.

Important points to be noted

18.1. Contents 397

FOQUS Documentation, Release 3.22.dev0

Fig. 17: Figure 5: Turbine Model loaded in FOQUS node - Inputs

398 Chapter 18. Vector Variables Support Capability

FOQUS Documentation, Release 3.22.dev0

Fig. 18: Figure 6: Turbine Model loaded in FOQUS node - Outputs

18.1. Contents 399

FOQUS Documentation, Release 3.22.dev0

1. In the “SimSinter Configuration File Vectorize” dialog box, the syntax for entering the input as well as output
vector details is the same.

2. In order to access the input or output vector variable element values in the node script, the syntax to be used is:

self.inVarsVector[“vector_name”].vector[index][‘value’] for input vector variable elements, and
self.outVarsVector[“vector_name”].vector[index][‘value’] for output vector variable elements, where the index ranges

from 0 to (size-1)

3. In order to access the input or output vector variable element values in the optimization module for specifying the
objective function or constraint, the syntax to be used is:

x[“node_name”][“vector_name”][index] for input vector variables f[“node_name”][“vector_name”][index] for output
vector variables

node_name is the name of the FOQUS node vector_name is the name of the vector from which the elements need to
be accessed index corresponds to the element’s location in the vectors

The vector name and index can be found in the “vector” and “index” fields of the scalar variables associated with the
vector, in the vectorized json file.

4. The syntax for accessing the scalar variables, created standalone, or associated with a vector, remains the same.

400 Chapter 18. Vector Variables Support Capability

CHAPTER

NINETEEN

REFERENCES

C. Tong, “PSUADE User’s Manual, Version 1.2.0,” Tech. Rep. LLNL-SM-407882, Lawrence Livermore National
Laboratory, Livermore, CA 94551-0808, May 2011.

A. Cozad, N. V. Sahinidis, and D. C. Miller, “Automatic Learning of Algebraic Models for Optimization,” AIChE
Journal, vol. 60, pp. 2211–2227, 2014.

C. B. Storlie, H. D. Bondell, B. J. Reich, and H. H. Zhang, “Surface estimation, variable selection, and the
nonparametric oracle property,” Statistica Sinica, vol. 21, no. 2, pp. 679–705, 2011.

C. B. Storlie, B. J. Reich, J. C. Helton, L. P. Swiler, and C. J. Sallaberry, “Analysis of computationally demanding
models with continuous and categorical inputs,” Reliability Engineering & System Safety, vol. 113, pp.
30–41, 2013.

B. J. Reich, C. B. Storlie, and H. D. Bondell, “Variable selection in bayesian smoothing spline anova models:
Application to deterministic computer codes,” Technometrics, vol. 51, no. 2, pp. 110–120, 2009.

J. H. Wegstein, “Accelerating Convergence of Iterative Processes,” j-CACM, vol. 1, no. 6, pp. 9–13, 1958.

N. Hansen, Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, ch.
The CMA Evolution Strategy: A Comparing Review, pp. 75–102. Springer, 2006.

S. G. Johnson, “The nlopt nonlinear-optimization package.” http://ab-initio.mit.edu/nlopt, May 2015.

E. Jones, T. Oliphant, P. Peterson, et al., “Scipy: Open source scientific tools for python.” http://www.scipy.org/,
May 2015.

K. Bhat, B. Sherman, K. Ajayi, B. Ng, J. Eslick, J. Ou, and J.Kress, “Solventfit: A calibration tool for solvent-based
CO2 capture models,” in 2015 CCSI Industry Advisory Board (IAB) Program Review Meeting, (Reston, VA),
September 2015.

K. Wu, F. Chollet, “Serialization and saving.” https://keras.io/guides/serialization_and_saving/, April 2020.

M. Abadi, A. Agarwal, P. Barham, et al., “TensorFlow: An end-to-end open source machine learning platform.”
https://www.tensorflow.org/, 2015.

A. Meurer, C.P. Smith, M. Paprocki, et al., “SymPy 1.10.1 Documentation.” https://docs.sympy.org/latest/index.
html, Jan 2017.

S. Marcel, Y. Rodriguez, “Torchvision the machine-vision package of torch.”” In Proceedings of the 18th ACM
international conference on Multimedia (pp. 1485-1488), October 2010.

L. Buitinck, G. Louppe, M.Blondel, et al., “API design for machine learning software: experiences from the scikit-
learn project.” European Conference on Machine Learning and Principles and Practices of Knowledge Discovery
in Databases, September 2013.

M. A. Bouhlel, J. T. Hwang, N. Bartoli, et al., “A Python surrogate modeling framework with derivatives.” Ad-
vances in Engineering Software, Vol 135 (pp. 102662), September 2019.

401

http://ab-initio.mit.edu/nlopt
http://www.scipy.org/
https://keras.io/guides/serialization_and_saving/
https://www.tensorflow.org/
https://docs.sympy.org/latest/index.html
https://docs.sympy.org/latest/index.html

FOQUS Documentation, Release 3.22.dev0

402 Chapter 19. References

CHAPTER

TWENTY

CONTACT AND SUPPORT

There are multiple ways to contact the development team, get support, file a bug, make a feature request and even
contribute code changes to FOQUS:

• Send a private email to ccsi-support@acceleratecarboncapture.org for contacting an internal set of developers.

• Subscribe to and send an email to our ccsi-users@acceleratecarboncapture.org public discussion forum to ask a
question of the existing user base.

• Use any of the public GitHub features:

– Read or start a new Discussion

– Open a new Issue if you believe you’ve found a bug (please include detailed steps on how to reproduce the
error, including if possible, screenshots and log files.) This is also where you can make feature requests.

– Contribute changes to the FOQUS project by opening a Pull Request

General information about the Carbon Capture Simulation for Industry Impact (CCSI2) project, of which FOQUS is a
part, can be found on the https://www.acceleratecarboncapture.org/ web site.

403

mailto:ccsi-support@acceleratecarboncapture.org
mailto:ccsi-users@acceleratecarboncapture.org
https://github.com/CCSI-Toolset/FOQUS/discussions
https://github.com/CCSI-Toolset/FOQUS/issues
https://github.com/CCSI-Toolset/FOQUS/pulls
https://www.acceleratecarboncapture.org/

FOQUS Documentation, Release 3.22.dev0

404 Chapter 20. Contact and Support

CHAPTER

TWENTYONE

COPYRIGHT AND LICENSE

Copyright (c) 2012 - 2024

21.1 Copyright Notice

Foqus was produced under the DOE Carbon Capture Simulation Initiative (CCSI), and is copyright (c) 2012 - 2024
by the software owners: Oak Ridge Institute for Science and Education (ORISE), TRIAD National Security, LLC.,

Lawrence Livermore National Security, LLC., The Regents of the University of California, through Lawrence
Berkeley National Laboratory, Battelle Memorial Institute, Pacific Northwest Division through Pacific Northwest
National Laboratory, Carnegie Mellon University, West Virginia University, Boston University, the Trustees of

Princeton University, The University of Texas at Austin, URS Energy & Construction, Inc., et al.. All rights reserved.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government
consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its
behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the

public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so.

21.2 License Agreement

Foqus Copyright (c) 2012 - 2024, by the software owners: Oak Ridge Institute for Science and Education (ORISE),
TRIAD National Security, LLC., Lawrence Livermore National Security, LLC., The Regents of the University of

California, through Lawrence Berkeley National Laboratory, Battelle Memorial Institute, Pacific Northwest Division
through Pacific Northwest National Laboratory, Carnegie Mellon University, West Virginia University, Boston

University, the Trustees of Princeton University, The University of Texas at Austin, URS Energy & Construction, Inc.,
et al. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the Carbon Capture Simulation Initiative, U.S. Dept. of Energy, the National Energy Tech-
nology Laboratory, Oak Ridge Institute for Science and Education (ORISE), TRIAD National Security, LLC.,
Lawrence Livermore National Security, LLC., the University of California, Lawrence Berkeley National Lab-
oratory, Battelle Memorial Institute, Pacific Northwest National Laboratory, Carnegie Mellon University, West
Virginia University, Boston University, the Trustees of Princeton University, the University of Texas at Austin,

405

FOQUS Documentation, Release 3.22.dev0

URS Energy & Construction, Inc., nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or
performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements

available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free

perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software,
distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form.

406 Chapter 21. Copyright and License

CHAPTER

TWENTYTWO

FOQUS

22.1 Overview

The Framework for Optimization, Quantification of Uncertainty, and Surrogates (FOQUS) serves as the primary
computational platform enabling advanced Process Systems Engineering (PSE) capabilities to be integrated with
commercial process simulation software. It can be used to synthesize, design, and optimize a complete carbon

capture system while considering uncertainty. FOQUS enables users to effectively screen potential capture concepts
in the context of a complete industrial process so that trade-offs can be appropriately evaluated. The technical and

economic performance characteristics of the capture process are highly dependent on employing an effective
approach for process synthesis. Since large-scale carbon capture processes are outside of current experience, heuristic
and evolutionary approaches are likely to be inadequate. Thus, a key aspect of FOQUS is that it bridges this gap by

supporting a superstructure-based approach to determine the optimal process configuration and equipment
interconnections.

22.2 Modules

1. SimSinter provides a wrapper to enable models created in process simulators to be linked into a FOQUS Flow-
sheet.

2. The FOQUS Flowsheet is used to link simulations together and connect model variables between simulations on
the flowsheet. FOQUS enables linking models from different simulation packages.

3. Simulations are run through Turbine, which manages the multiple runs needed to build surrogate models, per-
form derivative-free optimization or conduct an Uncertainty Quantification (UQ) analysis. Turbine provides the
capability for job queuing and enables these jobs to be run in parallel using cloud- or cluster-based computing
platforms or a single workstation.

4. The Surrogates module can create algebraic surrogate models to support large-scale deterministic optimization,
including superstructure optimization to determine process configurations. One of the available surrogate models
is the Automated Learning of Algebraic Models for Optimization (ALAMO). ALAMO is an external product
due to background Intellectual Property (IP) issues.

5. The Derivative-Free Optimization (DFO) module enables derivative-free (or simulation-based) optimization di-
rectly on the process models linked together on a FOQUS Flowsheet. It utilizes Excel to calculate complex
objective functions, such as the cost of electricity.

6. The UQ module enables the effects of uncertainty to be propagated through the complete system model, sensi-
tivity of the model to be assessed, and the most significant sources of uncertainty identified to enable prioritizing
of experimental resources to obtain additional data.

7. The Optimization Under Uncertainty (OUU) module combines the capabilities of the DFO and the UQ modules
to enable scenario-based optimization, such as optimization over a range of operating scenarios.

407

FOQUS Documentation, Release 3.22.dev0

8. The Sequential Design of Experiments (SDOE) module currently provides a way to construct flexible space-
filling designs based on a user-provided candidate set of input points. The method allows for new designs to
be constructed as well as augmenting existing data to strategically select input combintions that minimizes the
distance between points. Development of this module is continuing and will soon include other options for design
construction.

22.3 Application Based Examples

FOQUS has been used to solve problems based on comprehensive analysis and optimization of carbon capture
systems. Some relevant research work that includes FOQUS can be found in the following publications:

Chen, Y., Eslick, J.C., Grossmann, I.E., Miller, D.C., 2015. Simultaneous process optimization and heat integration
based on rigorous process simulations. Computers and Chemical Engineering 81, 180–199.

Gao, Q., Miller, D.C., 2015. Optimization of amine-based solid sorbent chemistry for post-combustion carbon
capture. Paper presented at: 2015 International Pittsburgh Coal Conference; 5–8 October 2015; Pittsburgh, PA, USA.

Ma, J., Mahapatra, P., Zitney, S.E., Biegler, L.T., Miller, D.C., 2016. D-RM Builder: A software tool for generating
fast and accurate nonlinear dynamic reduced models from high-fidelity models. Computers and Chemical

Engineering 94, 60–74.

Miller, D.C., Agarwal, D., Bhattacharyya, D., Boverhof, J., Chen, Y., Eslick, J., Leek, J., Ma, J., Mahapatra, P., Ng, B.,
Sahinidis, N.V., Tong, C., Zitney, S.E., 2017. Innovative computational tools and models for the design, optimization
and control of carbon capture processes, in: Papadopoulos, A.I., Seferlis, P. (Eds.), Process Systems and Materials for

CO2 Capture: Modelling, Design, Control and Integration. John Wiley & Sons Ltd, Chichester, UK, pp. 311–342.

Soepyan, F.B., Anderson-Cook, C.M., Morgan, J.C., Tong, C.H., Bhattacharyya, D., Omell, B.P., Matuszewski, M.S.,
Bhat, K.S., Zamarripa, M.A., Eslick, J.C., Kress, J.D., Gattiker, J.R., Russell, C.S., Ng, B., Ou, J.C., Miller, D.C.,

2018. Sequential Design of Experiments to Maximize Learning from Carbon Capture Pilot Plant Testing. In: Eden,
M.R., Ierapetritou, M.G., Towler, G.P. (Editors), 13th International Symposium on Process Systems Engineering

(PSE 2018). Elsevier, Amsterdam, pp. 283-288.

Additional research work can be found on https://www.acceleratecarboncapture.org/publications

22.4 Contact and Support

There are multiple ways to contact the development team, get support, file a bug, make a feature request and even
contribute code changes to FOQUS:

• Send a private email to ccsi-support@acceleratecarboncapture.org for contacting an internal set of developers.

• Subscribe to and send an email to our ccsi-users@acceleratecarboncapture.org public discussion forum to ask a
question of the existing user base.

• Use any of the public GitHub features:

– Read or start a new Discussion

– Open a new Issue if you believe you’ve found a bug (please include detailed steps on how to reproduce the
error, including if possible, screenshots and log files.) This is also where you can make feature requests.

– Contribute changes to the FOQUS project by opening a Pull Request

General information about the Carbon Capture Simulation for Industry Impact (CCSI2) project, of which FOQUS is a
part, can be found on the https://www.acceleratecarboncapture.org/ web site.

408 Chapter 22. FOQUS

https://www.acceleratecarboncapture.org/publications
mailto:ccsi-support@acceleratecarboncapture.org
mailto:ccsi-users@acceleratecarboncapture.org
https://github.com/CCSI-Toolset/FOQUS/discussions
https://github.com/CCSI-Toolset/FOQUS/issues
https://github.com/CCSI-Toolset/FOQUS/pulls
https://www.acceleratecarboncapture.org/

	FOQUS Installation and Running
	Quick Start
	Contents
	Install Python
	Anaconda or Miniconda Install and Setup

	Install FOQUS
	For Apple silicon
	Install FOQUS Examples
	Run FOQUS
	Running FOQUS without a graphical interface (“batch” or “headless” mode)

	Install Optional Software
	Install PSUADE-Lite (current version: 1.9.0)
	Install Turbine and SimSinter (Windows Only)
	Install ALAMO
	Install NLopt
	Install SnobFit
	Install R

	The FOQUS “Settings” Tab

	Introduction
	Simulation Based Optimization
	Uncertainty Quantification
	Optimization Under Uncertainty
	Surrogate Models
	ALAMO
	ACOSSO
	BSS-ANOVA

	Flowsheets and Settings
	Contents
	Reference
	Getting Started
	Home Menu
	Session Information Display
	Session Menu
	Adding or Changing Turbine Simulations

	Settings
	Flowsheet
	Flowsheet Editor
	Node Editor
	Node Variables
	Node Script
	Edge Editor

	Sample Results
	Error Codes

	Tutorial
	Tutorial 1: Creating a Flowsheet
	The Basics
	Automatically running FOQUS for a set of user-defined input conditions

	Tutorial 2: Creating a Flowsheet with Linked Simulations
	Tutorial 3: Flowsheets with Recycle
	Tutorial 4: Flowsheet Result Data
	Sorting Data
	Filtering Data
	Exporting Data
	Clipboard
	CSV File

	Tutorial 5: Using the AWS FOQUS Cloud
	Running on AWS FOQUS Cloud

	Optimization
	Contents
	Reference
	Problem Set Up
	Solver Options
	Running Optimization

	Tutorial
	Tutorial 1: Optimization
	Problem Set Up
	Solver Settings
	Running Optimization

	Tutorial 2: Parameter Estimation

	Uncertainty Quantification (UQ)
	Contents
	Reference
	UQ User Interface
	Simulation Ensemble Setup Dialog

	Tutorials
	Tutorial 1: Simulation Ensemble Creation and Execution
	Creating a simulation ensemble using the variables’ distributions
	Automatically running FOQUS for a set of user-defined input conditions

	Tutorial 2: Data Manipulation
	Filtering
	Variable Deletion
	Output Value Modification

	Tutorial 3: Single-Output Analysis
	Parameter Selection
	Ensemble Data Analysis
	Ensemble Data Visualization

	Tutorial 4: Response Surface Based Analysis
	Response Surface Model Validation
	Response Surface Based Uncertainty Analysis
	Response Surface Based Mixed Epistemic-Aleatory Uncertainty Analysis
	Response Surface Based Sensitivity Analysis
	Response Surface Based Visualization

	Tutorial 5: Bayesian Inference

	File Formats
	PSUADE Full File Format
	PSUADE Sample File Format
	Comma Separated Values (CSV) File Format

	Optimization Under Uncertainty (OUU)
	Contents
	Reference
	OUU Variables
	OUU Objective Functions
	Mathematical Formulations
	Single-Stage Formulation
	Two-Stage Formulation

	OUU User Interface

	Tutorials
	Example 1: OUU with Discrete Uncertain Parameters Only
	Example 2: OUU with Continuous Uncertain Parameters Only
	Example 3: OUU with Continuous Uncertain Parameters and Response Surface
	Example 4: OUU with Discrete and Continuous Uncertain Parameters
	Example 5: OUU with Mixed Uncertain Parameters and Response Surface
	Example 6: OUU with User-provided Samples and Response Surface
	Example 7: OUU with Large User-provided Samples and Response Surface

	Surrogate Modeling
	Contents
	Gradient Generation to Support Gradient-Enhanced Neural Networks
	Machine Learning & Artificial Intelligence Flowsheet Model Plugins
	Custom Model Attributes
	Data Normalization For Neural Network Models
	Usage Example

	Surrogate Models Overview
	Data Selection
	Variables
	Method Settings
	Execution

	Tutorial
	Tutorial 1: ALAMO
	Flowsheet Setup
	Creating Initial Samples
	Data Selection
	Variable Selection
	Method Settings
	Execution
	Results

	Tutorial 2: ACOSSO
	Tutorial 3: BSS-ANOVA
	Tutorial 4: Surrogates with UQ Tools
	Tutorial 5: Surrogates with the Flowsheet
	Tutorial 6: Neural Networks

	Sequential Design of Experiments (SDOE)
	Contents
	Sequential Design of Experiments (SDOE)
	Why Space-Filling Designs?
	Matching the Design Type to Experiment Goals

	Using the SDoE Module - The Basics
	Creating a New Candidate Set
	Loading from File
	Generating a New Candidate Set

	Using the Data Imputation Feature
	Basic Steps for a Uniform Space Design
	Basic Steps for a Non-Uniform Space Design
	Basic Steps for an Input-Response Space-Filling Design
	Efficient Implementation of Experimental Run Order

	Examples
	Example USF-1: Constructing Uniform Space Filling minimax and maximin designs for a 2-D input space
	Example USF-2: Augmenting the Example USF-1 design in a 2-D input space with a Uniform Space Filling Design
	Example USF-3: A Uniform Space Filling Design for a Carbon Capture example in a 5-D input space
	Example NUSF-1: Constructing Non-Uniform Space Filling maximin designs for a 2-D input space
	Example NUSF-2: Constructing Non-Uniform Space Filling for a 4-Input Carbon Capture example
	Example IRSF-1: Constructing Input-Response Space Filling maximin designs for a 2-D input space with 1-D response

	Robust Optimality-Based Design of Experiments (ODoE)
	Contents
	ODoE Overview
	ODoE Variables
	ODoE Objective Functions

	Tutorials
	Example 1: ODoE with Existing Candidate Set
	Example 2: ODoE Generating New Candidate Set

	Heat Integration
	Tutorial
	Tutorial: Heat Integration with FOQUS
	Motivation:
	Aim:
	Procedure:
	Result:

	PYOMO-FOQUS
	Tutorial
	Tutorial: Running PYOMO Optimization Model in FOQUS
	Instructions

	IDAES-FOQUS
	Tutorial
	Tutorial: Running IDAES model in FOQUS
	Instructions

	FOQUS-MATLAB
	Contents
	MATLAB-FOQUS interface
	Introduction
	Option 1: MATLAB - FOQUS direct
	Option 2: MATLAB script implementation

	MATLAB-FOQUS interface - tutorials
	Problem Statement: Steady-State Continuous Stirred Tank Reactor (CSTR)
	Tutorial 1: MATLAB - FOQUS direct
	Tutorial 2: MATLAB script implementation

	Simulation Standard Interface (SimSinter)
	Contents
	SimSinter Configuration
	Tutorial
	Tutorial 1: Aspen Custom Modeler (ACM) Configuration
	Tutorial 2: Aspen Plus Configuration
	Tutorial 3: Microsoft Excel Configuration
	Tutorial 4: gPROMS Configuration
	Configuring gPROMS to Work with SimSinter
	Exporting an Encrypted Simulation to Run with SimSinter
	Configuring SimSinter to Work with gPROMS

	Additional ACM Functionality with Excel/VBA

	Surrogate Model Based Optimizer
	Contents
	Surrogate model-based optimizer - overview
	Introduction
	Additional python packages required
	Framework

	Surrogate model-based optimizer - tutorial
	Flash Optimization
	MEA Carbon Capture System Optimization

	Debugging
	How to Debug
	Known Issues
	Turbine Configuration
	Contact and Support

	Developer Documentation
	Development Tools, Technology and Process
	Developer Setup
	Pre-commit hooks (optional, but recommended)
	Run Tests
	Building the Docs locally
	Contact and Support

	Vector Variables Support Capability
	Contents
	Vector Variable Support Capability - Introduction
	Motivation:
	New Features in FOQUS for vector support:
	Potential Applications:

	Example 1 - Handling Vector Variables in Python Models
	Example 2 - Handling Vector Variables in Aspen Plus Models

	References
	Contact and Support
	Copyright and License
	Copyright Notice
	License Agreement

	FOQUS
	Overview
	Modules
	Application Based Examples
	Contact and Support

